IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v109y2022i2p503-519..html
   My bibliography  Save this article

Estimation under matrix quadratic loss and matrix superharmonicity
[Shrinkage estimation with a matrix loss function]

Author

Listed:
  • T Matsuda
  • W E Strawderman

Abstract

SummaryWe investigate estimation of a normal mean matrix under the matrix quadratic loss. Improved estimation under the matrix quadratic loss implies improved estimation of any linear combination of the columns under the quadratic loss. First, an unbiased estimate of risk is derived and the Efron–Morris estimator is shown to be minimax. Next, a notion of matrix superharmonicity for matrix-variate functions is introduced and shown to have properties analogous to those of the usual superharmonic functions, which may be of independent interest. Then, it is shown that the generalized Bayes estimator with respect to a matrix superharmonic prior is minimax. We also provide a class of matrix superharmonic priors that includes the previously proposed generalization of Stein’s prior. Numerical results demonstrate that matrix superharmonic priors work well for low-rank matrices.

Suggested Citation

  • T Matsuda & W E Strawderman, 2022. "Estimation under matrix quadratic loss and matrix superharmonicity [Shrinkage estimation with a matrix loss function]," Biometrika, Biometrika Trust, vol. 109(2), pages 503-519.
  • Handle: RePEc:oup:biomet:v:109:y:2022:i:2:p:503-519.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asab025
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Honda, Toshio, 1991. "Minimax estimators in the manova model for arbitrary quadratic loss and unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 36(1), pages 113-120, January.
    2. Takeru Matsuda & Fumiyasu Komaki, 2015. "Singular value shrinkage priors for Bayesian prediction," Biometrika, Biometrika Trust, vol. 102(4), pages 843-854.
    3. Bilodeau, Martin & Kariya, Takeaki, 1989. "Minimax estimators in the normal MANOVA model," Journal of Multivariate Analysis, Elsevier, vol. 28(2), pages 260-270, February.
    4. Matsuda, Takeru & Komaki, Fumiyasu, 2019. "Empirical Bayes matrix completion," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 195-210.
    5. Arjun K. Gupta & Daya K. Nagar, 2000. "Matrix-variate beta distribution," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 24, pages 1-11, January.
    6. Xie, M. Y., 1993. "All Admissible Linear Estimates of the Mean Matrix," Journal of Multivariate Analysis, Elsevier, vol. 44(2), pages 220-226, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xiao & Matsuda, Takeru & Komaki, Fumiyasu, 2024. "Empirical Bayes Poisson matrix completion," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
    2. Ahmed, S. E. & Krzanowski, W. J., 2004. "Biased estimation in a simple multivariate regression model," Computational Statistics & Data Analysis, Elsevier, vol. 45(4), pages 689-696, May.
    3. Matsuda, Takeru & Komaki, Fumiyasu, 2019. "Empirical Bayes matrix completion," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 195-210.
    4. Kubokawa, T. & Srivastava, M. S., 2001. "Robust Improvement in Estimation of a Mean Matrix in an Elliptically Contoured Distribution," Journal of Multivariate Analysis, Elsevier, vol. 76(1), pages 138-152, January.
    5. Muhinyuza, Stanislas & Bodnar, Taras & Lindholm, Mathias, 2020. "A test on the location of the tangency portfolio on the set of feasible portfolios," Applied Mathematics and Computation, Elsevier, vol. 386(C).
    6. Hassairi, Abdelhamid & Roula, Amel, 2022. "Exponential and related probability distributions on symmetric matrices," Statistics & Probability Letters, Elsevier, vol. 187(C).
    7. Nardo, Elvira Di, 2020. "Polynomial traces and elementary symmetric functions in the latent roots of a non-central Wishart matrix," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    8. Joshua Chan & Arnaud Doucet & Roberto León-González & Rodney W. Strachan, 2018. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Working Paper series 18-38, Rimini Centre for Economic Analysis.
    9. Mark Bognanni, 2018. "A Class of Time-Varying Parameter Structural VARs for Inference under Exact or Set Identification," Working Papers (Old Series) 1811, Federal Reserve Bank of Cleveland.
    10. Matsuda, Takeru & Strawderman, William E., 2019. "Improved loss estimation for a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 300-311.
    11. Shokofeh Zinodiny & Saralees Nadarajah, 2022. "Matrix Variate Two-Sided Power Distribution," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 179-194, March.
    12. Dette, Holger & Tomecki, Dominik, 2019. "Determinants of block Hankel matrices for random matrix-valued measures," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5200-5235.
    13. Malay Ghosh & Tatsuya Kubokawa & Gauri Sankar Datta, 2020. "Density Prediction and the Stein Phenomenon," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 330-352, August.
    14. Saralees Nadarajah, 2009. "A bivariate distribution with gamma and beta marginals with application to drought data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(3), pages 277-301.
    15. Noda Kazuo & Wu Qi-Guang & Shimizu Kunio, 2002. "Γ-Μινιμαχιτυ Of A Generalized Bayes Unbiased Estimator In A Multivariate Linear Model," Statistics & Risk Modeling, De Gruyter, vol. 20(1-4), pages 53-66, April.
    16. Alfelt, Gustav & Bodnar, Taras & Javed, Farrukh & Tyrcha, Joanna, 2020. "Singular conditional autoregressive Wishart model for realized covariance matrices," Working Papers 2021:1, Örebro University, School of Business.
    17. Shokofeh Zinodiny & Saralees Nadarajah, 2024. "A New Class of Bayes Minimax Estimators of the Mean Matrix of a Matrix Variate Normal Distribution," Mathematics, MDPI, vol. 12(7), pages 1-14, April.
    18. Taras Bodnar & Holger Dette & Nestor Parolya & Erik Thors'en, 2019. "Sampling Distributions of Optimal Portfolio Weights and Characteristics in Low and Large Dimensions," Papers 1908.04243, arXiv.org, revised Apr 2023.
    19. Bauder, David & Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2020. "Bayesian inference of the multi-period optimal portfolio for an exponential utility," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    20. Wang, Dong & Liu, Xialu & Chen, Rong, 2019. "Factor models for matrix-valued high-dimensional time series," Journal of Econometrics, Elsevier, vol. 208(1), pages 231-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:109:y:2022:i:2:p:503-519.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.