IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v21y2012i1p54-73.html
   My bibliography  Save this article

Testing for bivariate spherical symmetry

Author

Listed:
  • John Einmahl
  • Maria Gantner

Abstract

An omnibus test for spherical symmetry in R2 is proposed, employing localized empirical likelihood. The thus obtained test statistic is distri- bution-free under the null hypothesis. The asymptotic null distribution is established and critical values for typical sample sizes, as well as the asymptotic ones, are presented. In a simulation study, the good perfor- mance of the test is demonstrated. Furthermore, a real data example is presented.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)(This abstract was borrowed from another version of this item.)

Suggested Citation

  • John Einmahl & Maria Gantner, 2012. "Testing for bivariate spherical symmetry," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 54-73, March.
  • Handle: RePEc:spr:testjl:v:21:y:2012:i:1:p:54-73
    DOI: 10.1007/s11749-011-0235-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-011-0235-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-011-0235-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Einmahl, J.H.J., 1987. "Multivariate empirical processes," Other publications TiSEM 4d74fa6b-5281-48ea-aa4d-5, Tilburg University, School of Economics and Management.
    2. Einmahl, J.H.J. & McKeague, I.W., 2002. "Empirical Likelihood based on Hypothesis Testing," Other publications TiSEM 402576fa-8c0e-45e2-a394-8, Tilburg University, School of Economics and Management.
    3. Jiajuan Liang & Kai-Tai Fang & Fred Hickernell, 2008. "Some necessary uniform tests for spherical symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(3), pages 679-696, September.
    4. Koltchinskii, V. I. & Li, Lang, 1998. "Testing for Spherical Symmetry of a Multivariate Distribution," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 228-244, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francq, C. & Jiménez-Gamero, M.D. & Meintanis, S.G., 2017. "Tests for conditional ellipticity in multivariate GARCH models," Journal of Econometrics, Elsevier, vol. 196(2), pages 305-319.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gantner, M., 2010. "Some nonparametric diagnostic statistical procedures and their asymptotic behavior," Other publications TiSEM eb04bdba-bf8a-4f6c-8dd8-9, Tilburg University, School of Economics and Management.
    2. Jiajuan Liang & Ping He & Qiong Liu, 2024. "Testing Spherical Symmetry Based on Statistical Representative Points," Mathematics, MDPI, vol. 12(24), pages 1-19, December.
    3. Albisetti, Isaia & Balabdaoui, Fadoua & Holzmann, Hajo, 2020. "Testing for spherical and elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    4. John H. J. Einmahl & Fan Yang & Chen Zhou, 2021. "Testing the Multivariate Regular Variation Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 907-919, October.
    5. Narayanaswamy Balakrishnan & Laurent Bordes & Christian Paroissin & Jean-Christophe Turlot, 2016. "Single change-point detection methods for small lifetime samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 531-551, July.
    6. Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.
    7. Karun Adusumilli & Taisuke Otsu, 2017. "Empirical Likelihood for Random Sets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1064-1075, July.
    8. Jiajuan Liang & Kai Wang Ng & Guoliang Tian, 2019. "A class of uniform tests for goodness-of-fit of the multivariate $$L_p$$ L p -norm spherical distributions and the $$l_p$$ l p -norm symmetric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 137-162, February.
    9. Manzotti, A. & Pérez, Francisco J. & Quiroz, Adolfo J., 2002. "A Statistic for Testing the Null Hypothesis of Elliptical Symmetry," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 274-285, May.
    10. repec:cep:stiecm:/2014/574 is not listed on IDEAS
    11. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2014. "Depth-Based Runs Tests for bivariate Central Symmetry," Working Papers ECARES ECARES 2014-03, ULB -- Universite Libre de Bruxelles.
    12. Francq, Christian & Jiménez Gamero, Maria Dolores & Meintanis, Simos, 2015. "Tests for sphericity in multivariate garch models," MPRA Paper 67411, University Library of Munich, Germany.
    13. repec:jss:jstsof:28:i03 is not listed on IDEAS
    14. Zou, Changliang & Liu, Yukun & Qin, Peng & Wang, Zhaojun, 2007. "Empirical likelihood ratio test for the change-point problem," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 374-382, February.
    15. Juan-Juan Cai & John H. J. Einmahl & Laurens Haan & Chen Zhou, 2015. "Estimation of the marginal expected shortfall: the mean when a related variable is extreme," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 417-442, March.
    16. Einmahl, J.H.J. & McKeague, I.W., 2002. "Empirical Likelihood based on Hypothesis Testing," Other publications TiSEM 402576fa-8c0e-45e2-a394-8, Tilburg University, School of Economics and Management.
    17. Zhang, Jin & Wu, Yuehua, 2007. "k-Sample tests based on the likelihood ratio," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4682-4691, May.
    18. Song Xi Chen & Jiti Gao, 2010. "Simultaneous Testing of Mean and Variance Structures in Nonlinear Time Series Models," School of Economics and Public Policy Working Papers 2010-28, University of Adelaide, School of Economics and Public Policy.
    19. Koning, A.J. & Peng, L., 2005. "Goodness-of-fit tests for a heavy tailed distribution," Econometric Institute Research Papers EI 2005-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Hammou El Barmi & Lahcen El Bermi, 2013. "Empirical likelihood ratio test for symmetry against type I bias with applications to competing risks," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 487-498, June.
    21. Rodríguez-Martínez, C.M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2021. "A multi-scale symmetry analysis of uninterrupted trends returns in daily financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    22. Einmahl, John & Krajina, Andrea, 2023. "Empirical Likelihood Based Testing for Multivariate Regular Variation," Discussion Paper 2023-001, Tilburg University, Center for Economic Research.

    More about this item

    Keywords

    Asymptotic distribution; Distribution free; Empirical likelihood; Hypothesis test; Spherical symmetry; 62G10; 62G20; 62G30; 62H15; 60F05;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:21:y:2012:i:1:p:54-73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.