IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v59y2018i2d10.1007_s00362-016-0787-2.html
   My bibliography  Save this article

Estimation of parameters of Weibull–Gamma distribution based on progressively censored data

Author

Listed:
  • Rashad M. EL-Sagheer

    (A1-Azhar University)

Abstract

In this paper, the estimation of parameters of a three-parameter Weibull–Gamma distribution based on progressively type-II right censored sample is studied. The maximum likelihood, Bayes, and parametric bootstrap methods are used for estimating the unknown parameters as well as some lifetime parameters reliability function, hazard function and coefficient of variation. Approximate confidence intervals for the unknown parameters as well as reliability function, hazard function and coefficient of variation are constructed based on the s-normal approximation to the asymptotic distribution of maximum likelihood estimators (MLEs), and log-transformed MLEs. In addition, two bootstrap CIs are also proposed. Bayes estimates of the unknown parameters and the corresponding credible intervals are obtained by using the Gibbs within Metropolis–Hasting samplers procedure. Furthermore, the results of Bayes method are obtained under both the balanced squared error loss and balanced linear-exponential loss. Analysis of a simulated data set has also been presented for illustrative purposes. Finally, a Monte Carlo simulation study is carried out to investigate the precision of the Bayes estimates with MLEs and two bootstrap estimates, also to compare the performance of different corresponding CIs considered.

Suggested Citation

  • Rashad M. EL-Sagheer, 2018. "Estimation of parameters of Weibull–Gamma distribution based on progressively censored data," Statistical Papers, Springer, vol. 59(2), pages 725-757, June.
  • Handle: RePEc:spr:stpapr:v:59:y:2018:i:2:d:10.1007_s00362-016-0787-2
    DOI: 10.1007/s00362-016-0787-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-016-0787-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-016-0787-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    2. N. Balakrishnan, 2007. "Rejoinder on: Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 290-296, August.
    3. Basak, Prasanta & Basak, Indrani & Balakrishnan, N., 2009. "Estimation for the three-parameter lognormal distribution based on progressively censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3580-3592, August.
    4. Chansoo Kim & Jinhyouk Jung & Younshik Chung, 2011. "Bayesian estimation for the exponentiated Weibull model under Type II progressive censoring," Statistical Papers, Springer, vol. 52(1), pages 53-70, February.
    5. Mohammad Jafari Jozani & Éric Marchand & Ahmad Parsian, 2012. "Bayesian and Robust Bayesian analysis under a general class of balanced loss functions," Statistical Papers, Springer, vol. 53(1), pages 51-60, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruhul Ali Khan & Murari Mitra, 2021. "Estimation issues in the Exponential–Logarithmic model under hybrid censoring," Statistical Papers, Springer, vol. 62(1), pages 419-450, February.
    2. Bo-Hong Wu & Hirofumi Michimae & Takeshi Emura, 2020. "Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty–copula model," Computational Statistics, Springer, vol. 35(4), pages 1525-1552, December.
    3. Leijia Ding & Wenhao Gui, 2023. "Statistical Inference of Two Gamma Distributions under the Joint Type-II Censoring Scheme," Mathematics, MDPI, vol. 11(9), pages 1-23, April.
    4. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    5. Shu-Fei Wu & Meng-Zong Song, 2023. "Experimental Design for Progressive Type I Interval Censoring on the Lifetime Performance Index of Chen Lifetime Distribution," Mathematics, MDPI, vol. 11(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Refah Alotaibi & Mazen Nassar & Hoda Rezk & Ahmed Elshahhat, 2022. "Inferences and Engineering Applications of Alpha Power Weibull Distribution Using Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(16), pages 1-21, August.
    2. Olayan Albalawi & Naresh Chandra Kabdwal & Qazi J. Azhad & Rashi Hora & Basim S. O. Alsaedi, 2022. "Estimation of the Generalized Logarithmic Transformation Exponential Distribution under Progressively Type-II Censored Data with Application to the COVID-19 Mortality Rates," Mathematics, MDPI, vol. 10(7), pages 1-19, March.
    3. Fu, Jiayu & Xu, Ancha & Tang, Yincai, 2012. "Objective Bayesian analysis of Pareto distribution under progressive Type-II censoring," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1829-1836.
    4. Kousik Maiti & Suchandan Kayal, 2019. "Estimation for the generalized Fréchet distribution under progressive censoring scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1276-1301, October.
    5. Essam A. Ahmed, 2014. "Bayesian estimation based on progressive Type-II censoring from two-parameter bathtub-shaped lifetime model: an Markov chain Monte Carlo approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(4), pages 752-768, April.
    6. Amit Singh Nayal & Bhupendra Singh & Vrijesh Tripathi & Abhishek Tyagi, 2024. "Analyzing stress-strength reliability $$\delta =\text{ P }[U," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(6), pages 2453-2472, June.
    7. Park, Sangun & Ng, Hon Keung Tony & Chan, Ping Shing, 2015. "On the Fisher information and design of a flexible progressive censored experiment," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 142-149.
    8. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    9. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    10. Bander Al-Zahrani & Areej M. AL-Zaydi, 2022. "Moments of progressively type-II censored order statistics from the complementary exponential geometric distribution and associated inference," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1052-1065, June.
    11. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    12. Amal S. Hassan & Rana M. Mousa & Mahmoud H. Abu-Moussa, 2024. "Bayesian Analysis of Generalized Inverted Exponential Distribution Based on Generalized Progressive Hybrid Censoring Competing Risks Data," Annals of Data Science, Springer, vol. 11(4), pages 1225-1264, August.
    13. E. M. Almetwally & H. M. Almongy & M. K. Rastogi & M. Ibrahim, 2020. "Maximum Product Spacing Estimation of Weibull Distribution Under Adaptive Type-II Progressive Censoring Schemes," Annals of Data Science, Springer, vol. 7(2), pages 257-279, June.
    14. Refah Alotaibi & Ehab M. Almetwally & Qiuchen Hai & Hoda Rezk, 2022. "Optimal Test Plan of Step Stress Partially Accelerated Life Testing for Alpha Power Inverse Weibull Distribution under Adaptive Progressive Hybrid Censored Data and Different Loss Functions," Mathematics, MDPI, vol. 10(24), pages 1-24, December.
    15. Wenjie Zhang & Wenhao Gui, 2022. "Statistical Inference and Optimal Design of Accelerated Life Testing for the Chen Distribution under Progressive Type-II Censoring," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    16. Devendra Kumar & M. Nassar & Sanku Dey, 2023. "Progressive Type-II Censored Data and Associated Inference with Application Based on Li–Li Rayleigh Distribution," Annals of Data Science, Springer, vol. 10(1), pages 43-71, February.
    17. Kousik Maiti & Suchandan Kayal, 2023. "Estimating Reliability Characteristics of the Log-Logistic Distribution Under Progressive Censoring with Two Applications," Annals of Data Science, Springer, vol. 10(1), pages 89-128, February.
    18. M. Hermanns & E. Cramer, 2018. "Inference with progressively censored k-out-of-n system lifetime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 787-810, December.
    19. Hanan Haj Ahmad & Mohamed Aboshady & Mahmoud Mansour, 2024. "The Role of Risk Factors in System Performance: A Comprehensive Study with Adaptive Progressive Type-II Censoring," Mathematics, MDPI, vol. 12(11), pages 1-21, June.
    20. Xuehua Hu & Wenhao Gui, 2018. "Bayesian and Non-Bayesian Inference for the Generalized Pareto Distribution Based on Progressive Type II Censored Sample," Mathematics, MDPI, vol. 6(12), pages 1-26, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:59:y:2018:i:2:d:10.1007_s00362-016-0787-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.