IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v163y2020ics0167715220301024.html
   My bibliography  Save this article

On the non-stochastic ordering of some quadratic forms

Author

Listed:
  • Marchand, Éric
  • Strawderman, William E.

Abstract

For Y=‖aZ+θ‖2, a>0, Z∼Np(θ,Ip), θ≠{0}, we show that the distribution of Y is not stochastically ordered in a>0. We provide extensions to spherically symmetric, elliptically symmetric, and skew-normal distributions, as well as to other quadratic forms.

Suggested Citation

  • Marchand, Éric & Strawderman, William E., 2020. "On the non-stochastic ordering of some quadratic forms," Statistics & Probability Letters, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:stapro:v:163:y:2020:i:c:s0167715220301024
    DOI: 10.1016/j.spl.2020.108799
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715220301024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2020.108799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Tonghui & Li, Baokun & Gupta, Arjun K., 2009. "Distribution of quadratic forms under skew normal settings," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 533-545, March.
    2. T. Cacoullos & M. Koutras, 1984. "Quadratic forms in spherical random variables: Generalized noncentral x2 distribution," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 31(3), pages 447-461, September.
    3. Marchand, Éric & Strawderman, William E., 2020. "On shrinkage estimation for balanced loss functions," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    2. Ye, Rendao & Wang, Tonghui & Gupta, Arjun K., 2014. "Distribution of matrix quadratic forms under skew-normal settings," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 229-239.
    3. Young, Phil D. & Harvill, Jane L. & Young, Dean M., 2016. "A derivation of the multivariate singular skew-normal density function," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 40-45.
    4. Rendao Ye & Tonghui Wang & Saowanit Sukparungsee & Arjun Gupta, 2015. "Tests in variance components models under skew-normal settings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(7), pages 885-904, October.
    5. Olcay Arslan, 2015. "Variance-mean mixture of the multivariate skew normal distribution," Statistical Papers, Springer, vol. 56(2), pages 353-378, May.
    6. Li, Baokun & Tian, Weizhong & Wang, Tonghui, 2018. "Remarks for the singular multivariate skew-normal distribution and its quadratic forms," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 105-112.
    7. Rendao Ye & Bingni Fang & Weixiao Du & Kun Luo & Yiting Lu, 2022. "Bootstrap Tests for the Location Parameter under the Skew-Normal Population with Unknown Scale Parameter and Skewness Parameter," Mathematics, MDPI, vol. 10(6), pages 1-23, March.
    8. Karamikabir, Hamid & Afshari, Mahmoud, 2020. "Generalized Bayesian shrinkage and wavelet estimation of location parameter for spherical distribution under balance-type loss: Minimaxity and admissibility," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    9. Zheng Wei & Seongyong Kim & Boseung Choi & Daeyoung Kim, 2019. "Multivariate Skew Normal Copula for Asymmetric Dependence: Estimation and Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 365-387, January.
    10. Hobbad, Lahoucine & Marchand, Éric & Ouassou, Idir, 2021. "On shrinkage estimation of a spherically symmetric distribution for balanced loss functions," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    11. Young, Phil D. & Kahle, David J. & Young, Dean M., 2017. "On the independence of singular multivariate skew-normal sub-vectors," Statistics & Probability Letters, Elsevier, vol. 122(C), pages 58-62.
    12. Robert Paige & A. Trindade & R. Wickramasinghe, 2014. "Extensions of saddlepoint-based bootstrap inference," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(5), pages 961-981, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:163:y:2020:i:c:s0167715220301024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.