IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v140y2015icp245-258.html
   My bibliography  Save this article

Estimation of the mean vector in a singular multivariate normal distribution

Author

Listed:
  • Tsukuma, Hisayuki
  • Kubokawa, Tatsuya

Abstract

This paper addresses the problem of estimating the mean vector of a singular multivariate normal distribution with an unknown singular covariance matrix. The maximum likelihood estimator is shown to be minimax relative to a quadratic loss weighted by the Moore–Penrose inverse of the covariance matrix. An unbiased risk estimator relative to the weighted quadratic loss is provided for a Baranchik type class of shrinkage estimators. Based on the unbiased risk estimator, a sufficient condition for the minimaxity is expressed not only as a differential inequality, but also as an integral inequality. Also, generalized Bayes minimax estimators are established by using an interesting structure of singular multivariate normal distribution.

Suggested Citation

  • Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2015. "Estimation of the mean vector in a singular multivariate normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 245-258.
  • Handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:245-258
    DOI: 10.1016/j.jmva.2015.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15001438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hisayuki Tsukuma & Tatsuya Kubokawa, 2014. "A Unified Approach to Estimating a Normal Mean Matrix in High and Low Dimensions," CIRJE F-Series CIRJE-F-926, CIRJE, Faculty of Economics, University of Tokyo.
    2. Díaz-García, José A. & Jáimez, Ramón Gutierrez & Mardia, Kanti V., 1997. "Wishart and Pseudo-Wishart Distributions and Some Applications to Shape Theory," Journal of Multivariate Analysis, Elsevier, vol. 63(1), pages 73-87, October.
    3. Olkin, Ingram, 1998. "The density of the inverse and pseudo-inverse of a random matrix," Statistics & Probability Letters, Elsevier, vol. 38(2), pages 131-135, June.
    4. Wells, Martin T. & Zhou, Gongfu, 2008. "Generalized Bayes minimax estimators of the mean of multivariate normal distribution with unknown variance," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2208-2220, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karamikabir, Hamid & Afshari, Mahmoud, 2020. "Generalized Bayesian shrinkage and wavelet estimation of location parameter for spherical distribution under balance-type loss: Minimaxity and admissibility," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    2. Chételat, Didier & Wells, Martin T., 2016. "Improved second order estimation in the singular multivariate normal model," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 1-19.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hisayuki Tsukuma & Tatsuya Kubokawa, 2014. "Estimation and Prediction Intervals in Transformed Linear Mixed Models," CIRJE F-Series CIRJE-F-930, CIRJE, Faculty of Economics, University of Tokyo.
    2. Zinodiny, S. & Rezaei, S. & Nadarajah, S., 2014. "Bayes minimax estimation of the multivariate normal mean vector under balanced loss function," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 96-101.
    3. José Díaz-García & Francisco Caro-Lopera, 2012. "Generalised shape theory via SV decomposition I," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(4), pages 541-565, May.
    4. Shokofeh Zinodiny & Saralees Nadarajah, 2023. "Generalized Bayes Minimax Estimators of the Variance of a Multivariate Normal Distribution," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1667-1683, August.
    5. Liu, Jin Shan & Ip, Wai Cheung & Wong, Heung, 2009. "Predictive inference for singular multivariate elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1440-1446, August.
    6. Díaz-García, José A., 2007. "A note about measures and Jacobians of singular random matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(5), pages 960-969, May.
    7. Zinodiny, S. & Strawderman, W.E. & Parsian, A., 2011. "Bayes minimax estimation of the multivariate normal mean vector for the case of common unknown variance," Journal of Multivariate Analysis, Elsevier, vol. 102(9), pages 1256-1262, October.
    8. Maruyama, Yuzo & Strawderman, William E., 2009. "An extended class of minimax generalized Bayes estimators of regression coefficients," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2155-2166, November.
    9. Díaz-García, José A. & González-Farías, Graciela, 2005. "Singular random matrix decompositions: Jacobians," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 296-312, April.
    10. Zhang, Zhihua, 2007. "Pseudo-inverse multivariate/matrix-variate distributions," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1684-1692, September.
    11. Taras Bodnar & Arjun Gupta, 2013. "An exact test for a column of the covariance matrix based on a single observation," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(6), pages 847-855, August.
    12. Omer L. Gebizlioglu & Serap Yörübulut, 2016. "A Pseudo-Pareto Distribution and Concomitants of Its Order Statistics," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 1043-1064, December.
    13. Kjetil B. Halvorsen & Victor Ayala & Eduardo Fierro, 2016. "On the Marginal Distribution of the Diagonal Blocks in a Blocked Wishart Random Matrix," International Journal of Analysis, Hindawi, vol. 2016, pages 1-5, November.
    14. Díaz García, José A. & González Farías, Graciela, 2002. "Singular random matrix decompositions: distributions," DES - Working Papers. Statistics and Econometrics. WS ws024211, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Díaz-García, José A. & Gutiérrez-Jáimez, Ramón, 2006. "The distribution of the residual from a general elliptical multivariate linear model," Journal of Multivariate Analysis, Elsevier, vol. 97(8), pages 1829-1841, September.
    16. Tsukuma, Hisayuki, 2016. "Estimation of a high-dimensional covariance matrix with the Stein loss," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 1-17.
    17. Bodnar, Taras & Okhrin, Yarema, 2008. "Properties of the singular, inverse and generalized inverse partitioned Wishart distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2389-2405, November.
    18. Bodnar, Taras & Mazur, Stepan & Podgórski, Krzysztof, 2016. "Singular inverse Wishart distribution and its application to portfolio theory," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 314-326.
    19. Zinodiny, S. & Rezaei, S. & Arjmand, O. Naghshineh & Nadarajah, S., 2013. "Bayes minimax estimation of the multivariate normal mean vector under quadratic loss functions," Statistics & Probability Letters, Elsevier, vol. 83(9), pages 2052-2056.
    20. Díaz García, José A. & González Farías, Graciela, 2002. "Singular random matrix decompositions: Jacobians," DES - Working Papers. Statistics and Econometrics. WS ws024110, Universidad Carlos III de Madrid. Departamento de Estadística.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:140:y:2015:i:c:p:245-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.