IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v153y2017icp246-254.html
   My bibliography  Save this article

Admissibility of linear estimators of the common mean parameter in general linear models under a balanced loss function

Author

Listed:
  • Cao, Ming-Xiang
  • He, Dao-Jiang

Abstract

In order to investigate linearly admissible estimators of the common mean parameter in general linear models, we introduce and motivate the use of a balanced loss function obtained by combining Zellner’s idea of balanced loss (Zellner, 1994) with the unified theory of least squares (Rao, 1973). In classes of homogeneous and non-homogeneous linear estimators, sufficient and necessary conditions for linear estimators of the common mean parameter to be admissible are obtained, respectively. A comparison is then made between linearly admissible estimators and a “truly” unified least square estimator.

Suggested Citation

  • Cao, Ming-Xiang & He, Dao-Jiang, 2017. "Admissibility of linear estimators of the common mean parameter in general linear models under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 246-254.
  • Handle: RePEc:eee:jmvana:v:153:y:2017:i:c:p:246-254
    DOI: 10.1016/j.jmva.2016.10.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16301154
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.10.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jafari Jozani, Mohammad & Marchand, Éric & Parsian, Ahmad, 2006. "On estimation with weighted balanced-type loss function," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 773-780, April.
    2. Hu, Guikai & Peng, Ping, 2011. "All admissible linear estimators of a regression coefficient under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 102(8), pages 1217-1224, September.
    3. N. Farsipour & A. Asgharzadeh, 2004. "Estimation of a normal mean relative to balanced loss functions," Statistical Papers, Springer, vol. 45(2), pages 279-286, April.
    4. Dey, Dipak K. & Ghosh, Malay & Strawderman, William E., 1999. "On estimation with balanced loss functions," Statistics & Probability Letters, Elsevier, vol. 45(2), pages 97-101, November.
    5. Cao, Mingxiang, 2014. "Admissibility of linear estimators for the stochastic regression coefficient in a general Gauss–Markoff model under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 25-30.
    6. Ohtani, Kazuhiro, 1998. "Inadmissibility of the Stein-rule estimator under the balanced loss function," Journal of Econometrics, Elsevier, vol. 88(1), pages 193-201, November.
    7. H. Toutenburg & Shalabh, 2005. "Estimation of regression coefficients subject to exact linear restrictions when some observations are missing and quadratic error balanced loss function is used," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 14(2), pages 385-396, December.
    8. Mohammad Jafari Jozani & Éric Marchand & Ahmad Parsian, 2012. "Bayesian and Robust Bayesian analysis under a general class of balanced loss functions," Statistical Papers, Springer, vol. 53(1), pages 51-60, February.
    9. He, Daojiang & Wu, Jie, 2014. "Admissible linear estimators of multivariate regression coefficient with respect to an inequality constraint under matrix balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 37-43.
    10. Rukhin, Andrew L., 2012. "Estimating common mean and heterogeneity variance in two study case meta-analysis," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1318-1325.
    11. Carter Hill, R. & Judge, George, 1987. "Improved prediction in the presence of multicollinearity," Journal of Econometrics, Elsevier, vol. 35(1), pages 83-100, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buatikan Mirezi & Selahattin Kaçıranlar, 2023. "Admissible linear estimators in the general Gauss–Markov model under generalized extended balanced loss function," Statistical Papers, Springer, vol. 64(1), pages 73-92, February.
    2. Karamikabir, Hamid & Afshari, Mahmoud, 2020. "Generalized Bayesian shrinkage and wavelet estimation of location parameter for spherical distribution under balance-type loss: Minimaxity and admissibility," Journal of Multivariate Analysis, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marchand, Éric & Strawderman, William E., 2020. "On shrinkage estimation for balanced loss functions," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    2. Mehrjoo, Mehrdad & Jafari Jozani, Mohammad & Pawlak, Miroslaw, 2021. "Toward hybrid approaches for wind turbine power curve modeling with balanced loss functions and local weighting schemes," Energy, Elsevier, vol. 218(C).
    3. Mohammad Jafari Jozani & Éric Marchand & Ahmad Parsian, 2012. "Bayesian and Robust Bayesian analysis under a general class of balanced loss functions," Statistical Papers, Springer, vol. 53(1), pages 51-60, February.
    4. Hobbad, Lahoucine & Marchand, Éric & Ouassou, Idir, 2021. "On shrinkage estimation of a spherically symmetric distribution for balanced loss functions," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    5. Gómez-Déniz, E., 2008. "A generalization of the credibility theory obtained by using the weighted balanced loss function," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 850-854, April.
    6. Zinodiny, S. & Rezaei, S. & Nadarajah, S., 2014. "Bayes minimax estimation of the multivariate normal mean vector under balanced loss function," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 96-101.
    7. Jerzy Baran & Agnieszka Stępień-Baran, 2013. "Sequential estimation of a location parameter and powers of a scale parameter from delayed observations," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 263-280, August.
    8. Cao, Mingxiang, 2014. "Admissibility of linear estimators for the stochastic regression coefficient in a general Gauss–Markoff model under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 25-30.
    9. A. Asgharzadeh & N. Sanjari Farsipour, 2008. "Estimation of the exponential mean time to failure under a weighted balanced loss function," Statistical Papers, Springer, vol. 49(1), pages 121-131, March.
    10. Kousik Maiti & Suchandan Kayal, 2019. "Estimation for the generalized Fréchet distribution under progressive censoring scheme," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1276-1301, October.
    11. Chaturvedi, Anoop & Shalabh, 2004. "Risk and Pitman closeness properties of feasible generalized double k-class estimators in linear regression models with non-spherical disturbances under balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 90(2), pages 229-256, August.
    12. Karamikabir, Hamid & Afshari, Mahmoud, 2020. "Generalized Bayesian shrinkage and wavelet estimation of location parameter for spherical distribution under balance-type loss: Minimaxity and admissibility," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    13. Hu, Guikai & Peng, Ping, 2012. "Matrix linear minimax estimators in a general multivariate linear model under a balanced loss function," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 286-295.
    14. Zhang, Xinyu & Chen, Ti & Wan, Alan T.K. & Zou, Guohua, 2009. "Robustness of Stein-type estimators under a non-scalar error covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2376-2388, November.
    15. Wan, Alan T. K. & Chaturvedi, Anoop, 2001. "Double k-Class Estimators in Regression Models with Non-spherical Disturbances," Journal of Multivariate Analysis, Elsevier, vol. 79(2), pages 226-250, November.
    16. Qiang Zhang & Lijun Wu & Qianqian Cui, 2017. "The balanced credibility estimators with correlation risk and inflation factor," Statistical Papers, Springer, vol. 58(3), pages 659-672, September.
    17. van Akkeren, Marco & Judge, George & Mittelhammer, Ron, 2002. "Generalized moment based estimation and inference," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 127-148, March.
    18. Buatikan Mirezi & Selahattin Kaçıranlar, 2023. "Admissible linear estimators in the general Gauss–Markov model under generalized extended balanced loss function," Statistical Papers, Springer, vol. 64(1), pages 73-92, February.
    19. Jafari Jozani, Mohammad & Marchand, Éric & Parsian, Ahmad, 2006. "On estimation with weighted balanced-type loss function," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 773-780, April.
    20. Rashad M. EL-Sagheer, 2018. "Estimation of parameters of Weibull–Gamma distribution based on progressively censored data," Statistical Papers, Springer, vol. 59(2), pages 725-757, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:153:y:2017:i:c:p:246-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.