IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v114y2019i525p332-343.html
   My bibliography  Save this article

Linear Non-Gaussian Component Analysis Via Maximum Likelihood

Author

Listed:
  • Benjamin B. Risk
  • David S. Matteson
  • David Ruppert

Abstract

Independent component analysis (ICA) is popular in many applications, including cognitive neuroscience and signal processing. Due to computational constraints, principal component analysis (PCA) is used for dimension reduction prior to ICA (PCA+ICA), which could remove important information. The problem is that interesting independent components (ICs) could be mixed in several principal components that are discarded and then these ICs cannot be recovered. We formulate a linear non-Gaussian component model with Gaussian noise components. To estimate the model parameters, we propose likelihood component analysis (LCA), in which dimension reduction and latent variable estimation are achieved simultaneously. Our method orders components by their marginal likelihood rather than ordering components by variance as in PCA. We present a parametric LCA using the logistic density and a semiparametric LCA using tilted Gaussians with cubic B-splines. Our algorithm is scalable to datasets common in applications (e.g., hundreds of thousands of observations across hundreds of variables with dozens of latent components). In simulations, latent components are recovered that are discarded by PCA+ICA methods. We apply our method to multivariate data and demonstrate that LCA is a useful data visualization and dimension reduction tool that reveals features not apparent from PCA or PCA+ICA. We also apply our method to a functional magnetic resonance imaging experiment from the Human Connectome Project and identify artifacts missed by PCA+ICA. We present theoretical results on identifiability of the linear non-Gaussian component model and consistency of LCA. Supplementary materials for this article are available online.

Suggested Citation

  • Benjamin B. Risk & David S. Matteson & David Ruppert, 2019. "Linear Non-Gaussian Component Analysis Via Maximum Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 332-343, January.
  • Handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:332-343
    DOI: 10.1080/01621459.2017.1407772
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1407772
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1407772?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Virta, Joni & Lietzén, Niko & Viitasaari, Lauri & Ilmonen, Pauliina, 2024. "Latent model extreme value index estimation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    2. Virta, Joni & Li, Bing & Nordhausen, Klaus & Oja, Hannu, 2020. "Independent component analysis for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    3. Lee, Adam & Mesters, Geert, 2024. "Locally robust inference for non-Gaussian linear simultaneous equations models," Journal of Econometrics, Elsevier, vol. 240(1).
    4. Zhao, Yuxuan & Matteson, David S. & Mostofsky, Stewart H. & Nebel, Mary Beth & Risk, Benjamin B., 2022. "Group linear non-Gaussian component analysis with applications to neuroimaging," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:114:y:2019:i:525:p:332-343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.