IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v174y2019ics0047259x18305554.html
   My bibliography  Save this article

Sparse network estimation for dynamical spatio-temporal array models

Author

Listed:
  • Lund, Adam
  • Hansen, Niels Richard

Abstract

Neural field models represent neuronal communication on a population level via synaptic weight functions. Using voltage sensitive dye (VSD) imaging it is possible to obtain measurements of neural fields with a relatively high spatial and temporal resolution. The synaptic weight functions represent functional connectivity in the brain and give rise to a spatio-temporal dependence structure. We present a stochastic functional differential equation for modeling neural fields, which leads to a vector autoregressive model of the data via basis expansions of the synaptic weight functions and time and space discretization. Fitting the model to data is a practical challenge as this represents a large scale regression problem. By using a 1-norm penalty in combination with localized basis functions it is possible to learn a sparse network representation of the functional connectivity of the brain, but still, the explicit construction of a design matrix can be computationally prohibitive. We demonstrate that by using tensor product basis expansions, the computation of the penalized estimator via a proximal gradient algorithm becomes feasible. It is crucial for the computations that the data is organized in an array as is the case for the three dimensional VSD imaging data. This allows for the use of array arithmetic that is both memory and time efficient. Theproposed method is implemented and showcased in the R package dynamo available from CRAN.

Suggested Citation

  • Lund, Adam & Hansen, Niels Richard, 2019. "Sparse network estimation for dynamical spatio-temporal array models," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:jmvana:v:174:y:2019:i:c:s0047259x18305554
    DOI: 10.1016/j.jmva.2019.104532
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X18305554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.104532?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. D. Currie & M. Durban & P. H. C. Eilers, 2006. "Generalized linear array models with applications to multidimensional smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 259-280, April.
    2. Peszat, Szymon & Zabczyk, Jerzy, 1997. "Stochastic evolution equations with a spatially homogeneous Wiener process," Stochastic Processes and their Applications, Elsevier, vol. 72(2), pages 187-204, December.
    3. Jianqing Fan & Jinchi Lv & Lei Qi, 2011. "Sparse High-Dimensional Models in Economics," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 291-317, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Welham, S.J. & Thompson, R., 2009. "A note on bimodality in the log-likelihood function for penalized spline mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 920-931, February.
    3. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    4. Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
    5. Mr. Jorge A Chan-Lau, 2017. "Variance Decomposition Networks: Potential Pitfalls and a Simple Solution," IMF Working Papers 2017/107, International Monetary Fund.
    6. Demian Pouzo, 2015. "On the Non-Asymptotic Properties of Regularized M-estimators," Papers 1512.06290, arXiv.org, revised Oct 2016.
    7. Chelsey Hill & James Li & Matthew J. Schneider & Martin T. Wells, 2021. "The tensor auto‐regressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 636-652, July.
    8. Fan, Jianqing & Guo, Yongyi & Jiang, Bai, 2022. "Adaptive Huber regression on Markov-dependent data," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 802-818.
    9. Kristoffer Herland Hellton & Magne Thoresen, 2014. "The Impact of Measurement Error on Principal Component Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1051-1063, December.
    10. repec:hum:wpaper:sfb649dp2017-024 is not listed on IDEAS
    11. Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
    12. Márquez-Carreras, D. & Mellouk, M. & Sarrà, M., 2001. "On stochastic partial differential equations with spatially correlated noise: smoothness of the law," Stochastic Processes and their Applications, Elsevier, vol. 93(2), pages 269-284, June.
    13. Wang, Wuyi & Su, Liangjun, 2021. "Identifying latent group structures in nonlinear panels," Journal of Econometrics, Elsevier, vol. 220(2), pages 272-295.
    14. María Xosé Rodríguez‐Álvarez & María Durbán & Paul H.C. Eilers & Dae‐Jin Lee & Francisco Gonzalez, 2023. "Multidimensional adaptive P‐splines with application to neurons' activity studies," Biometrics, The International Biometric Society, vol. 79(3), pages 1972-1985, September.
    15. Balan, Raluca M. & Jolis, Maria & Quer-Sardanyons, Lluís, 2016. "SPDEs with rough noise in space: Hölder continuity of the solution," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 310-316.
    16. de Paula, Aureo & Rasul, Imran & Souza, Pedro, 2018. "Identifying Network Ties from Panel Data: Theory and an Application to Tax Competition," CEPR Discussion Papers 12792, C.E.P.R. Discussion Papers.
    17. Bernard Baffour & James Raymer, 2019. "Estimating multiregional survivorship probabilities for sparse data: An application to immigrant populations in Australia, 1981–2011," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 40(18), pages 463-502.
    18. Lee, Dae-Jin & Durbán, María, 2012. "Seasonal modulation mixed models for time series forecasting," DES - Working Papers. Statistics and Econometrics. WS ws122519, Universidad Carlos III de Madrid. Departamento de Estadística.
    19. Qinqin Hu & Lu Lin, 2017. "Conditional sure independence screening by conditional marginal empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 63-96, February.
    20. Zheng Tracy Ke & Jianqing Fan & Yichao Wu, 2015. "Homogeneity Pursuit," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 175-194, March.
    21. Matias D Cattaneo & Michael Jansson & Xinwei Ma, 2019. "Two-Step Estimation and Inference with Possibly Many Included Covariates," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 86(3), pages 1095-1122.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:174:y:2019:i:c:s0047259x18305554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.