IDEAS home Printed from https://ideas.repec.org/a/ebl/ecbull/eb-16-00034.html
   My bibliography  Save this article

Regularization parameter selection via cross-validation in the presence of dependent regressors: a simulation study

Author

Listed:
  • Yoshimasa Uematsu

    (The Institute of Statistical Mathematics)

  • Shinya Tanaka

    (Otaru University of Commerce)

Abstract

This letter reveals using simulation studies that regularization parameter selection via cross-validation (CV) in penalized regressions (e.g., Lasso) is valid even if the regressors are weakly dependent. In CV procedure, the time series structure of the data set is broken, meaning that there may occur a fatal problem unless the sample is i.i.d.; the estimation accuracy in the training step could be worse due to corruption of data continuity, which may furthermore lead to a bad choice of the regularization parameter. Even in such a situation, we find that CV works well as long as the sample size grows. These findings encourage us to apply the selection procedure via CV to macroeconomic empirical analyses with dependent regressors.

Suggested Citation

  • Yoshimasa Uematsu & Shinya Tanaka, 2016. "Regularization parameter selection via cross-validation in the presence of dependent regressors: a simulation study," Economics Bulletin, AccessEcon, vol. 36(1), pages 313-319.
  • Handle: RePEc:ebl:ecbull:eb-16-00034
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/Pubs/EB/2016/Volume36/EB-16-V36-I1-P31.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    2. Jianqing Fan & Jinchi Lv & Lei Qi, 2011. "Sparse High-Dimensional Models in Economics," Annual Review of Economics, Annual Reviews, vol. 3(1), pages 291-317, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
    2. Fan, Jianqing & Guo, Yongyi & Jiang, Bai, 2022. "Adaptive Huber regression on Markov-dependent data," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 802-818.
    3. Qinqin Hu & Lu Lin, 2017. "Conditional sure independence screening by conditional marginal empirical likelihood," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(1), pages 63-96, February.
    4. Zheng Tracy Ke & Jianqing Fan & Yichao Wu, 2015. "Homogeneity Pursuit," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 175-194, March.
    5. Zhang, Yongli & Yang, Yuhong, 2015. "Cross-validation for selecting a model selection procedure," Journal of Econometrics, Elsevier, vol. 187(1), pages 95-112.
    6. Kock, Anders Bredahl, 2016. "Oracle inequalities, variable selection and uniform inference in high-dimensional correlated random effects panel data models," Journal of Econometrics, Elsevier, vol. 195(1), pages 71-85.
    7. Joel L. Horowitz & Lars Nesheim, 2018. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," CeMMAP working papers CWP29/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Lan, Wei & Zhong, Ping-Shou & Li, Runze & Wang, Hansheng & Tsai, Chih-Ling, 2016. "Testing a single regression coefficient in high dimensional linear models," Journal of Econometrics, Elsevier, vol. 195(1), pages 154-168.
    9. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
    10. Mehmet Caner & Anders Bredahl Kock, 2016. "Oracle Inequalities for Convex Loss Functions with Nonlinear Targets," Econometric Reviews, Taylor & Francis Journals, vol. 35(8-10), pages 1377-1411, December.
    11. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    12. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    13. Cui, Hailong & Rajagopalan, Sampath & Ward, Amy R., 2020. "Predicting product return volume using machine learning methods," European Journal of Operational Research, Elsevier, vol. 281(3), pages 612-627.
    14. Xing, Li-Min & Zhang, Yue-Jun, 2022. "Forecasting crude oil prices with shrinkage methods: Can nonconvex penalty and Huber loss help?," Energy Economics, Elsevier, vol. 110(C).
    15. G. Pan & J. Gao & Y. Yang & M. Guo, 2012. "Independence Test for High Dimensional Random Vectors," Monash Econometrics and Business Statistics Working Papers 1/12, Monash University, Department of Econometrics and Business Statistics.
    16. Zhu, Ying, 2015. "Sparse Linear Models and l1−Regularized 2SLS with High-Dimensional Endogenous Regressors and Instruments," MPRA Paper 81217, University Library of Munich, Germany.
    17. Zhu, Ying, 2013. "Sparse Linear Models and Two-Stage Estimation in High-Dimensional Settings with Possibly Many Endogenous Regressors," MPRA Paper 49846, University Library of Munich, Germany.
    18. Horowitz, Joel L. & Nesheim, Lars, 2021. "Using penalized likelihood to select parameters in a random coefficients multinomial logit model," Journal of Econometrics, Elsevier, vol. 222(1), pages 44-55.
    19. De La Maza, Cristóbal & Davis, Alex & Azevedo, Inês, 2021. "Welfare analysis of the ecological impacts of electricity production in Chile using the sparse multinomial logit model," Ecological Economics, Elsevier, vol. 184(C).
    20. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.

    More about this item

    Keywords

    Regularization parameter selection; Cross-validation; Forecasting; Penalized Regression; High-dimensional time series model;
    All these keywords.

    JEL classification:

    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ebl:ecbull:eb-16-00034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.