IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v56y2012i10p2934-2948.html
   My bibliography  Save this article

Estimating the percentage of food expenditure in small areas using bias-corrected P-spline based estimators

Author

Listed:
  • Militino, A.F.
  • Goicoa, T.
  • Ugarte, M.D.

Abstract

Small area estimators based on a penalized spline regression model approximating a non-linear but smooth relationship between a response and a given covariate are obtained. In each small area, individual curves are fitted using penalized splines with B-spline bases, exploiting the mixed model representation of the P-splines for inferential purposes. To account for possible bias, a design-oriented bootstrap correction is proposed. The mean squared error of the bias-corrected estimator is also provided. The methods are used to estimate the percentage of food expenditure for alternative household sizes at provincial level in Spain using the 2006 Spanish Household Budget Survey.

Suggested Citation

  • Militino, A.F. & Goicoa, T. & Ugarte, M.D., 2012. "Estimating the percentage of food expenditure in small areas using bias-corrected P-spline based estimators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2934-2948.
  • Handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2934-2948
    DOI: 10.1016/j.csda.2012.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016794731200028X
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. I. D. Currie & M. Durban & P. H. C. Eilers, 2006. "Generalized linear array models with applications to multidimensional smoothing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 259-280, April.
    2. Heij, Christiaan & de Boer, Paul & Franses, Philip Hans & Kloek, Teun & van Dijk, Herman K., 2004. "Econometric Methods with Applications in Business and Economics," OUP Catalogue, Oxford University Press, number 9780199268016.
    3. Helen Parise & M. P. Wand & David Ruppert & Louise Ryan, 2001. "Incorporation of historical controls using semiparametric mixed models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(1), pages 31-42.
    4. Sharon L. Lohr & J. N. K. Rao, 2009. "Jackknife estimation of mean squared error of small area predictors in nonlinear mixed models," Biometrika, Biometrika Trust, vol. 96(2), pages 457-468.
    5. Brent A. Coull & David Ruppert & M. P. Wand, 2001. "Simple Incorporation of Interactions into Additive Models," Biometrics, The International Biometric Society, vol. 57(2), pages 539-545, June.
    6. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    7. Eilers, Paul H.C. & Currie, Iain D. & Durban, Maria, 2006. "Fast and compact smoothing on large multidimensional grids," Computational Statistics & Data Analysis, Elsevier, vol. 50(1), pages 61-76, January.
    8. Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
    9. A. F. Militino & M. D. Ugarte & T. Goicoa, 2007. "A BLUP Synthetic Versus an EBLUP Estimator: An Empirical Study of a Small Area Estimation Problem," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(2), pages 153-165.
    10. Ugarte, M.D. & Goicoa, T. & Militino, A.F. & Durbán, M., 2009. "Spline smoothing in small area trend estimation and forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3616-3629, August.
    11. Pfeffermann, Danny & Barnard, Charles H, 1991. "Some New Estimators for Small-Area Means with Application to the Assessment of Farmland Values," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(1), pages 73-84, January.
    12. M. Ugarte & A. Militino & T. Goicoa, 2009. "Benchmarked estimates in small areas using linear mixed models with restrictions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(2), pages 342-364, August.
    13. M. D. Ugarte & A. F. Militino & T. Goicoa, 2008. "Adjusting economic estimates in business surveys," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(11), pages 1253-1265.
    14. M. P. Wand, 2003. "Smoothing and mixed models," Computational Statistics, Springer, vol. 18(2), pages 223-249, July.
    15. J. D. Opsomer & G. Claeskens & M. G. Ranalli & G. Kauermann & F. J. Breidt, 2008. "Non‐parametric small area estimation using penalized spline regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 265-286, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. L. Scealy & A. H. Welsh, 2017. "A Directional Mixed Effects Model for Compositional Expenditure Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 24-36, January.
    2. Shonosuke Sugasawa & Tatsuya Kubokawa & J. N. K. Rao, 2018. "Small area estimation via unmatched sampling and linking models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 407-427, June.
    3. Rebecca Steorts & M. Ugarte, 2014. "Comments on: “Single and two-stage cross-sectional and time series benchmarking procedures for small area estimation”," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 680-685, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ugarte, M.D. & Goicoa, T. & Militino, A.F. & Durbán, M., 2009. "Spline smoothing in small area trend estimation and forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3616-3629, August.
    2. Salvati, Nicola & Chandra, Hukum & Giovanna Ranalli, M. & Chambers, Ray, 2010. "Small area estimation using a nonparametric model-based direct estimator," Computational Statistics & Data Analysis, Elsevier, vol. 54(9), pages 2159-2171, September.
    3. Rodríguez-Álvarez, María Xosé & Lee, Dae-Jin & Kneib, Thomas & Durbán, María & Eilers, Paul, 2013. "Fast algorithm for smoothing parameter selection in multidimensional generalized P-splines," DES - Working Papers. Statistics and Econometrics. WS ws133026, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. J. D. Opsomer & G. Claeskens & M. G. Ranalli & G. Kauermann & F. J. Breidt, 2008. "Non‐parametric small area estimation using penalized spline regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 265-286, February.
    5. Lee, Dae-Jin & Durbán, María, 2009. "P-spline anova-type interaction models for spatio-temporal smoothing," DES - Working Papers. Statistics and Econometrics. WS ws093312, Universidad Carlos III de Madrid. Departamento de Estadística.
    6. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    7. Basile, Roberto & Durbán, María & Mínguez, Román & María Montero, Jose & Mur, Jesús, 2014. "Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 229-245.
    8. María Xosé Rodríguez‐Álvarez & María Durbán & Paul H.C. Eilers & Dae‐Jin Lee & Francisco Gonzalez, 2023. "Multidimensional adaptive P‐splines with application to neurons' activity studies," Biometrics, The International Biometric Society, vol. 79(3), pages 1972-1985, September.
    9. M. D. Ugarte & A. F. Militino & T. Goicoa, 2008. "Adjusting economic estimates in business surveys," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(11), pages 1253-1265.
    10. María José Lombardía & Esther López-Vizcaíno & Cristina Rueda, 2021. "Selection model for domains across time: application to labour force survey by economic activities," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 228-254, March.
    11. Tzavidis, Nikos & Zhang, Li-Chun & Luna Hernandez, Angela & Schmid, Timo & Rojas-Perilla, Natalia, 2016. "From start to finish: A framework for the production of small area official statistics," Discussion Papers 2016/13, Free University Berlin, School of Business & Economics.
    12. Chandra, Hukum & Salvati, Nicola & Chambers, Ray, 2018. "Small area estimation under a spatially non-linear model," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 19-38.
    13. Lee, Dae-Jin & Durbán, María, 2008. "Smooth-car mixed models for spatial count data," DES - Working Papers. Statistics and Econometrics. WS ws085820, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Shonosuke Sugasawa & Tatsuya Kubokawa & J. N. K. Rao, 2018. "Small area estimation via unmatched sampling and linking models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 407-427, June.
    15. María José Lombardía & Stefan Sperlich, 2008. "Semiparametric inference in generalized mixed effects models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 913-930, November.
    16. M. Giovanna Ranalli & Giorgio E. Montanari & Cecilia Vicarelli, 2018. "Estimation of small area counts with the benchmarking property," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 349-378, December.
    17. Stefan Sperlich, 2013. "Comments on: Model-free model-fitting and predictive distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 227-233, June.
    18. Ralf Münnich & Julian Wagner & Joachim Hill & Johannes Stoffels & Henning Buddenbaum & Thomas Udelhoven, 2016. "Schätzung von Holzvorräten unter Verwendung von Fernerkundungsdaten [Estimation of timber reserves using remote sensing data]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(2), pages 95-112, October.
    19. Nikos Tzavidis & Li‐Chun Zhang & Angela Luna & Timo Schmid & Natalia Rojas‐Perilla, 2018. "From start to finish: a framework for the production of small area official statistics," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 927-979, October.
    20. Lee, Dae-Jin & Durbán, María, 2009. "Smooth-CAR mixed models for spatial count data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 2968-2979, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2934-2948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.