IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v144y2016icp38-53.html
   My bibliography  Save this article

Multivariate spline analysis for multiplicative models: Estimation, testing and application to climate change

Author

Listed:
  • Azaïs, Jean-Marc
  • Ribes, Aurélien

Abstract

This paper presents multiplicative, or bi-additive, models with some spline-type regularity for a rectangular array of data, for example in space and time. The one-dimensional smoothing spline model is extended to this multiplicative model including regularity in each dimension. For estimation, we prove the existence of the maximum penalized likelihood estimates (MPLEs), and introduce a numerical algorithm that converges in a weak sense to a critical point of the penalized likelihood. Explicit MPLEs are given in two important particular cases.

Suggested Citation

  • Azaïs, Jean-Marc & Ribes, Aurélien, 2016. "Multivariate spline analysis for multiplicative models: Estimation, testing and application to climate change," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 38-53.
  • Handle: RePEc:eee:jmvana:v:144:y:2016:i:c:p:38-53
    DOI: 10.1016/j.jmva.2015.09.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X15002560
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2015.09.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ciprian Crainiceanu & David Ruppert & Gerda Claeskens & M. P. Wand, 2005. "Exact likelihood ratio tests for penalised splines," Biometrika, Biometrika Trust, vol. 92(1), pages 91-103, March.
    2. Claudia Tebaldi & Julie Arblaster, 2014. "Pattern scaling: Its strengths and limitations, and an update on the latest model simulations," Climatic Change, Springer, vol. 122(3), pages 459-471, February.
    3. Henri Caussinus & Olivier Mestre, 2004. "Detection and correction of artificial shifts in climate series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(3), pages 405-425, August.
    4. Lu, Nelson & Zimmerman, Dale L., 2005. "The likelihood ratio test for a separable covariance matrix," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 449-457, July.
    5. Jean‐Baptiste Denis & John C. Gower, 1996. "Asymptotic Confidence Regions for Biadditive Models: Interpreting Genotype‐Environment Interactions," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 45(4), pages 479-493, December.
    6. Ohlson, Martin & Rauf Ahmad, M. & von Rosen, Dietrich, 2013. "The multilinear normal distribution: Introduction and some basic properties," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 37-47.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaili Fang & Inyoung Kim & Jeesun Jung, 2018. "Semiparametric Kernel-Based Regression for Evaluating Interaction Between Pathway Effect and Covariate," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 129-152, March.
    2. Ricardo Leiva & Anuradha Roy, 2016. "Multi-level multivariate normal distribution with self-similar compound symmetry covariance matrix," Working Papers 0146mss, College of Business, University of Texas at San Antonio.
    3. Chelsey Hill & James Li & Matthew J. Schneider & Martin T. Wells, 2021. "The tensor auto‐regressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 636-652, July.
    4. Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2015. "Estimation And Inference For Varying-Coefficient Models With Nonstationary Regressors Using Penalized Splines," Econometric Theory, Cambridge University Press, vol. 31(4), pages 753-777, August.
    5. Matthew A. Thomas & Ting Lin, 2018. "A dual model for emulation of thermosteric and dynamic sea-level change," Climatic Change, Springer, vol. 148(1), pages 311-324, May.
    6. Timothy Osborn & Craig Wallace & Ian Harris & Thomas Melvin, 2016. "Pattern scaling using ClimGen: monthly-resolution future climate scenarios including changes in the variability of precipitation," Climatic Change, Springer, vol. 134(3), pages 353-369, February.
    7. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    8. Christopher W. Callahan & Justin S. Mankin, 2022. "National attribution of historical climate damages," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
    9. Claudia Tebaldi & Michael F. Wehner, 2018. "Benefits of mitigation for future heat extremes under RCP4.5 compared to RCP8.5," Climatic Change, Springer, vol. 146(3), pages 349-361, February.
    10. Guggenberger, Patrik & Kleibergen, Frank & Mavroeidis, Sophocles, 2023. "A test for Kronecker Product Structure covariance matrix," Journal of Econometrics, Elsevier, vol. 233(1), pages 88-112.
    11. Stremersch, S. & Lemmens, A., 2008. "Sales Growth of New Pharmaceuticals Across the Globe: The Role of Regulatory Regimes," ERIM Report Series Research in Management ERS-2008-026-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    12. Akemi Tanaka & Kiyoshi Takahashi & Hideo Shiogama & Naota Hanasaki & Yoshimitsu Masaki & Akihiko Ito & Hibiki Noda & Yasuaki Hijioka & Seita Emori, 2017. "On the scaling of climate impact indicators with global mean temperature increase: a case study of terrestrial ecosystems and water resources," Climatic Change, Springer, vol. 141(4), pages 775-782, April.
    13. Timothy Opheim & Anuradha Roy, 2021. "Linear models for multivariate repeated measures data with block exchangeable covariance structure," Computational Statistics, Springer, vol. 36(3), pages 1931-1963, September.
    14. Yangyang Xu & Lei Lin, 2017. "Pattern scaling based projections for precipitation and potential evapotranspiration: sensitivity to composition of GHGs and aerosols forcing," Climatic Change, Springer, vol. 140(3), pages 635-647, February.
    15. Andrew Ciavarella & Daniel Cotterill & Peter Stott & Sarah Kew & Sjoukje Philip & Geert Jan Oldenborgh & Amalie Skålevåg & Philip Lorenz & Yoann Robin & Friederike Otto & Mathias Hauser & Sonia I. Sen, 2021. "Prolonged Siberian heat of 2020 almost impossible without human influence," Climatic Change, Springer, vol. 166(1), pages 1-18, May.
    16. Stacey E. Alexeeff & Doug Nychka & Stephan R. Sain & Claudia Tebaldi, 2018. "Emulating mean patterns and variability of temperature across and within scenarios in anthropogenic climate change experiments," Climatic Change, Springer, vol. 146(3), pages 319-333, February.
    17. Nathaniel E. Helwig, 2022. "Robust Permutation Tests for Penalized Splines," Stats, MDPI, vol. 5(3), pages 1-18, September.
    18. Jiang, Sijian & Deng, Xiangzheng & Liu, Gang & Zhang, Fan, 2021. "Climate change-induced economic impact assessment by parameterizing spatially heterogeneous CO2 distribution," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    19. Filipiak, Katarzyna & Klein, Daniel & Mokrzycka, Monika, 2024. "Discrepancy between structured matrices in the power analysis of a separability test," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    20. Sweeney Elizabeth & Crainiceanu Ciprian & Gertheiss Jan, 2016. "Testing differentially expressed genes in dose-response studies and with ordinal phenotypes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(3), pages 213-235, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:144:y:2016:i:c:p:38-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.