IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v98y2011i3p663-684.html
   My bibliography  Save this article

Efficient restricted estimators for conditional mean models with missing data

Author

Listed:
  • Z. Tan

Abstract

Consider a conditional mean model with missing data on the response or explanatory variables due to two-phase sampling or nonresponse. Robins et al. (1994) introduced a class of augmented inverse-probability-weighted estimators, depending on a vector of functions of explanatory variables and a vector of functions of coarsened data. Tsiatis (2006) studied two classes of restricted estimators, class 1 with both vectors restricted to finite-dimensional linear subspaces and class 2 with the first vector of functions restricted to a finite-dimensional linear subspace. We introduce a third class of restricted estimators, class 3, with the second vector of functions restricted to a finite-dimensional subspace. We derive a new estimator, which is asymptotically optimal in class 1, by the methods of nonparametric and empirical likelihood. We propose a hybrid strategy to obtain estimators that are asymptotically optimal in class 1 and locally optimal in class 2 or class 3. The advantages of the hybrid, likelihood estimator based on classes 1 and 3 are shown in a simulation study and a real-data example. Copyright 2011, Oxford University Press.

Suggested Citation

  • Z. Tan, 2011. "Efficient restricted estimators for conditional mean models with missing data," Biometrika, Biometrika Trust, vol. 98(3), pages 663-684.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:3:p:663-684
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr007
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, Peng & Wang, Qihua, 2014. "Semiparametric efficient estimation for partially linear single-index models with responses missing at random," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 33-50.
    2. Kennedy, Edward H. & Joffe, Marshall M. & Small, Dylan S., 2015. "Optimal restricted estimation for more efficient longitudinal causal inference," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 185-191.
    3. Tan, Zhiqiang, 2014. "Second-order asymptotic theory for calibration estimators in sampling and missing-data problems," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 240-253.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:3:p:663-684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.