IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v117y2013icp257-280.html
   My bibliography  Save this article

Dependent wild bootstrap for degenerate U- and V-statistics

Author

Listed:
  • Leucht, Anne
  • Neumann, Michael H.

Abstract

Degenerate U- and V-statistics play an important role in the field of hypothesis testing since numerous test statistics can be formulated in terms of these quantities. Therefore, consistent bootstrap methods for U- and V-statistics can be applied in order to determine critical values for these tests. We prove a new asymptotic result for degenerate U- and V-statistics of weakly dependent random variables. As our main contribution, we propose a new model-free bootstrap method for U- and V-statistics of dependent random variables. Our method is a modification of the dependent wild bootstrap recently proposed by Shao [X. Shao, The dependent wild bootstrap, J. Amer. Statist. Assoc. 105 (2010) 218–235], where we do not directly bootstrap the underlying random variables but the summands of the U- and V-statistics. Asymptotic theory for the original and bootstrap statistics is derived under simple and easily verifiable conditions. We discuss applications to a Cramér–von Mises-type test and a two sample test for the marginal distribution of a time series in detail. The finite sample behavior of the Cramér–von Mises test is explored in a small simulation study. While the empirical size was reasonably close to the nominal one, we obtained nontrivial empirical power in all cases considered.

Suggested Citation

  • Leucht, Anne & Neumann, Michael H., 2013. "Dependent wild bootstrap for degenerate U- and V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 257-280.
  • Handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:257-280
    DOI: 10.1016/j.jmva.2013.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X13000304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2013.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neumann, Michael H. & Paparoditis, Efstathios, 2000. "On bootstrapping L2-type statistics in density testing," Statistics & Probability Letters, Elsevier, vol. 50(2), pages 137-147, November.
    2. Dehling, Herold & Durieu, Olivier & Volny, Dalibor, 2009. "New techniques for empirical processes of dependent data," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3699-3718, October.
    3. Anne Leucht & Michael Neumann, 2013. "Degenerate $$U$$ - and $$V$$ -statistics under ergodicity: asymptotics, bootstrap and applications in statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 349-386, April.
    4. Shao, Xiaofeng, 2010. "The Dependent Wild Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 218-235.
    5. Axel Munk & Jean-Pierre Stockis & Janis Valeinis & Götz Giese, 2011. "Neyman smooth goodness-of-fit tests for the marginal distribution of dependent data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(5), pages 939-959, October.
    6. Leucht, Anne, 2012. "Characteristic function-based hypothesis tests under weak dependence," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 67-89.
    7. Dehling, H. & Mikosch, T., 1994. "Random Quadratic Forms and the Bootstrap for U-Statistics," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 392-413, November.
    8. Anderson, N. H. & Hall, P. & Titterington, D. M., 1994. "Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates," Journal of Multivariate Analysis, Elsevier, vol. 50(1), pages 41-54, July.
    9. Huang, Wei & Zhang, Lin-Xi, 2006. "Asymptotic normality for U-statistics of negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1125-1131, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hounyo, Ulrich & Varneskov, Rasmus T., 2020. "Inference for local distributions at high sampling frequencies: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 215(1), pages 1-34.
    2. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    3. Jentsch, Carsten & Leucht, Anne, 2014. "Bootstrapping Sample Quantiles of Discrete Data," Working Papers 14-15, University of Mannheim, Department of Economics.
    4. Michael H. Neumann, 2021. "Bootstrap for integer‐valued GARCH(p, q) processes," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 343-363, August.
    5. Friedrich, Marina & Smeekes, Stephan & Urbain, Jean-Pierre, 2020. "Autoregressive wild bootstrap inference for nonparametric trends," Journal of Econometrics, Elsevier, vol. 214(1), pages 81-109.
    6. Fu, Zhonghao & Hong, Yongmiao & Su, Liangjun & Wang, Xia, 2023. "Specification tests for time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 235(2), pages 720-744.
    7. Smeekes, S. & Urbain, J.R.Y.J., 2014. "A multivariate invariance principle for modified wild bootstrap methods with an application to unit root testing," Research Memorandum 008, Maastricht University, Graduate School of Business and Economics (GSBE).
    8. Doukhan, Paul & Lang, Gabriel & Leucht, Anne & Neumann, Michael H., 2014. "Dependent wild bootstrap for the empirical process," Working Papers 35246, University of Mannheim, Department of Economics.
    9. Dehling, Herold & Sharipov, Olimjon Sh. & Wendler, Martin, 2015. "Bootstrap for dependent Hilbert space-valued random variables with application to von Mises statistics," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 200-215.
    10. Leucht, Anne & Neumann, Michael H. & Kreiss, Jens-Peter, 2013. "A model specification test for GARCH(1,1) processes," Working Papers 13-11, University of Mannheim, Department of Economics.
    11. Chu, Ba, 2023. "A distance-based test of independence between two multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    12. Bahraoui Tarik & Bouezmarni Taoufik & Quessy Jean-François, 2018. "Testing the symmetry of a dependence structure with a characteristic function," Dependence Modeling, De Gruyter, vol. 6(1), pages 331-355, December.
    13. Marc Ditzhaus & Daniel Gaigall, 2022. "Testing marginal homogeneity in Hilbert spaces with applications to stock market returns," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 749-770, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leucht, Anne, 2012. "Characteristic function-based hypothesis tests under weak dependence," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 67-89.
    2. Anne Leucht & Jens-Peter Kreiss & Michael H. Neumann, 2015. "A Model Specification Test For GARCH(1,1) Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1167-1193, December.
    3. Inass Soukarieh & Salim Bouzebda, 2022. "Exchangeably Weighted Bootstraps of General Markov U -Process," Mathematics, MDPI, vol. 10(20), pages 1-42, October.
    4. Simos Meintanis & Dimitris Karlis, 2014. "Validation tests for the innovation distribution in INAR time series models," Computational Statistics, Springer, vol. 29(5), pages 1221-1241, October.
    5. Anne Leucht & Michael Neumann, 2013. "Degenerate $$U$$ - and $$V$$ -statistics under ergodicity: asymptotics, bootstrap and applications in statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 349-386, April.
    6. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    7. Axel Bücher & Holger Dette & Florian Heinrichs, 2023. "A portmanteau-type test for detecting serial correlation in locally stationary functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 255-278, July.
    8. Rho, Yeonwoo & Shao, Xiaofeng, 2019. "Bootstrap-Assisted Unit Root Testing With Piecewise Locally Stationary Errors," Econometric Theory, Cambridge University Press, vol. 35(1), pages 142-166, February.
    9. Jean-David Fermanian & Dominique Guégan, 2021. "Fair learning with bagging," Documents de travail du Centre d'Economie de la Sorbonne 21034, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    10. Ying Wang & Peter C. B. Phillips & Yundong Tu, 2024. "Limit Theory and Inference in Non-cointegrated Functional Coefficient Regression," Cowles Foundation Discussion Papers 2399, Cowles Foundation for Research in Economics, Yale University.
    11. Martin L. Hazelton & Tilman M. Davies, 2022. "Pointwise comparison of two multivariate density functions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1791-1810, December.
    12. Wang, Yizao, 2014. "Convergence to the maximum process of a fractional Brownian motion with shot noise," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 33-41.
    13. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    14. Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
    15. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    16. Marcelo Fernandes & Eduardo Mendes & Olivier Scaillet, 2015. "Testing for symmetry and conditional symmetry using asymmetric kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(4), pages 649-671, August.
    17. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    18. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    19. Quessy, Jean-François, 2021. "A Szekely–Rizzo inequality for testing general copula homogeneity hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    20. Zacharias Psaradakis & Marián Vávra, 2022. "Using Triples to Assess Symmetry Under Weak Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1538-1551, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:117:y:2013:i:c:p:257-280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.