IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v90y2014icp33-41.html
   My bibliography  Save this article

Convergence to the maximum process of a fractional Brownian motion with shot noise

Author

Listed:
  • Wang, Yizao

Abstract

We consider the maximum process of a random walk with additive independent noise in the form of maxi=1,…,n(Si+Yi). The random walk may have dependent increments, but its sample path is assumed to converge weakly to a fractional Brownian motion. When the largest noise has the same order as the maximal displacement of the random walk, we establish an invariance principle for the maximum process in the Skorohod topology. The limiting process is the maximum process of the fractional Brownian notion with shot noise generated by Poisson point processes.

Suggested Citation

  • Wang, Yizao, 2014. "Convergence to the maximum process of a fractional Brownian motion with shot noise," Statistics & Probability Letters, Elsevier, vol. 90(C), pages 33-41.
  • Handle: RePEc:eee:stapro:v:90:y:2014:i:c:p:33-41
    DOI: 10.1016/j.spl.2014.03.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214001072
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.03.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dehling, Herold & Durieu, Olivier & Volny, Dalibor, 2009. "New techniques for empirical processes of dependent data," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3699-3718, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
    2. Barrera, David & Peligrad, Costel & Peligrad, Magda, 2016. "On the functional CLT for stationary Markov chains started at a point," Stochastic Processes and their Applications, Elsevier, vol. 126(7), pages 1885-1900.
    3. Peligrad, Magda, 2020. "A new CLT for additive functionals of Markov chains," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5695-5708.
    4. Leucht, Anne & Neumann, Michael H., 2013. "Dependent wild bootstrap for degenerate U- and V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 257-280.
    5. Mikosch, Thomas & Zhao, Yuwei, 2015. "The integrated periodogram of a dependent extremal event sequence," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3126-3169.
    6. Damek, Ewa & Mikosch, Thomas & Zhao, Yuwei & Zienkiewicz, Jacek, 2023. "Whittle estimation based on the extremal spectral density of a heavy-tailed random field," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 232-267.
    7. Dehling, Herold & Durieu, Olivier, 2011. "Empirical processes of multidimensional systems with multiple mixing properties," Stochastic Processes and their Applications, Elsevier, vol. 121(5), pages 1076-1096, May.
    8. Olivier Durieu & Marco Tusche, 2014. "An Empirical Process Central Limit Theorem for Multidimensional Dependent Data," Journal of Theoretical Probability, Springer, vol. 27(1), pages 249-277, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:90:y:2014:i:c:p:33-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.