IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v76y2006i11p1125-1131.html
   My bibliography  Save this article

Asymptotic normality for U-statistics of negatively associated random variables

Author

Listed:
  • Huang, Wei
  • Zhang, Lin-Xi

Abstract

Let {Xn;n[greater-or-equal, slanted]0} be a sequence of negatively associated random variables and Un be a U-statistic based on this sample. We establish a central limit theorem for Un when the U-statistic is degenerate or non-degenerate.

Suggested Citation

  • Huang, Wei & Zhang, Lin-Xi, 2006. "Asymptotic normality for U-statistics of negatively associated random variables," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1125-1131, June.
  • Handle: RePEc:eee:stapro:v:76:y:2006:i:11:p:1125-1131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(05)00456-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Li-Xin, 2001. "The Weak Convergence for Functions of Negatively Associated Random Variables," Journal of Multivariate Analysis, Elsevier, vol. 78(2), pages 272-298, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leucht, Anne & Neumann, Michael H., 2013. "Dependent wild bootstrap for degenerate U- and V-statistics," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 257-280.
    2. Anne Leucht & Michael Neumann, 2013. "Degenerate $$U$$ - and $$V$$ -statistics under ergodicity: asymptotics, bootstrap and applications in statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 349-386, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Guang-hui & Wang, Jian-Feng, 2009. "Uniform bounds in normal approximation under negatively associated random fields," Statistics & Probability Letters, Elsevier, vol. 79(2), pages 215-222, January.
    2. Zhang, Junjian, 2006. "Empirical likelihood for NA series," Statistics & Probability Letters, Elsevier, vol. 76(2), pages 153-160, January.
    3. Wang, Jiang-Feng & Liang, Han-Ying, 2008. "A note on the almost sure central limit theorem for negatively associated fields," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1964-1970, September.
    4. Yongsong Qin & Yinghua Li & Weizhen Yang & Qingzhu Lei, 2011. "Confidence intervals for nonparametric regression functions under negatively associated errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 645-659.
    5. Ming Yuan & Chun Su & Taizhong Hu, 2003. "A Central Limit Theorem for Random Fields of Negatively Associated Processes," Journal of Theoretical Probability, Springer, vol. 16(2), pages 309-323, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:76:y:2006:i:11:p:1125-1131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.