IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v7y2019i1p247-258n13.html
   My bibliography  Save this article

Copulas, stable tail dependence functions, and multivariate monotonicity

Author

Listed:
  • Ressel Paul

    (Kath. Universität Eichstätt-Ingolstadt)

Abstract

For functions of several variables there exist many notions of monotonicity, three of them being characteristic for resp. distribution, survival and co-survival functions. In each case the “degree” of monotonicity is just the basic one of a whole scale.Copulas are special distribution functions, and stable tail dependence functions are special co-survival functions. It will turn out that for both classes the basic degree of monotonicity is the only one possible, apart from the (trivial) independence functions. As a consequence a “nesting” of such functions depends on particular circumstances. For nested Archimedean copulas the rather restrictive conditions known so far are considerably weakened.

Suggested Citation

  • Ressel Paul, 2019. "Copulas, stable tail dependence functions, and multivariate monotonicity," Dependence Modeling, De Gruyter, vol. 7(1), pages 247-258, January.
  • Handle: RePEc:vrs:demode:v:7:y:2019:i:1:p:247-258:n:13
    DOI: 10.1515/demo-2019-0013
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2019-0013
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2019-0013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ressel, Paul, 2011. "Monotonicity properties of multivariate distribution and survival functions -- With an application to Lévy-frailty copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 393-404, March.
    2. Mai, Jan-Frederik & Scherer, Matthias, 2012. "H-extendible copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 151-160.
    3. Rezapour, Mohsen, 2015. "On the construction of nested Archimedean copulas for d-monotone generators," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 21-32.
    4. Hering, Christian & Hofert, Marius & Mai, Jan-Frederik & Scherer, Matthias, 2010. "Constructing hierarchical Archimedean copulas with Lévy subordinators," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1428-1433, July.
    5. Ressel, Paul, 2012. "Functions operating on multivariate distribution and survival functions—With applications to classical mean-values and to copulas," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 55-67.
    6. Ressel, Paul, 2013. "Homogeneous distributions—And a spectral representation of classical mean values and stable tail dependence functions," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 246-256.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ressel Paul, 2018. "A multivariate version of Williamson’s theorem, ℓ-symmetric survival functions, and generalized Archimedean copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 356-368, December.
    2. Mercadier Cécile & Ressel Paul, 2021. "Hoeffding–Sobol decomposition of homogeneous co-survival functions: from Choquet representation to extreme value theory application," Dependence Modeling, De Gruyter, vol. 9(1), pages 179-198, January.
    3. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    4. Mai Jan-Frederik, 2019. "Simulation algorithms for hierarchical Archimedean copulas beyond the completely monotone case," Dependence Modeling, De Gruyter, vol. 7(1), pages 202-214, January.
    5. Ressel Paul, 2022. "Stable tail dependence functions – some basic properties," Dependence Modeling, De Gruyter, vol. 10(1), pages 225-235, January.
    6. Górecki, Jan & Hofert, Marius & Okhrin, Ostap, 2021. "Outer power transformations of hierarchical Archimedean copulas: Construction, sampling and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    7. Ressel, Paul, 2013. "Homogeneous distributions—And a spectral representation of classical mean values and stable tail dependence functions," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 246-256.
    8. Molchanov, Ilya & Strokorb, Kirstin, 2016. "Max-stable random sup-measures with comonotonic tail dependence," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2835-2859.
    9. Zhu, Wenjun & Wang, Chou-Wen & Tan, Ken Seng, 2016. "Structure and estimation of Lévy subordinated hierarchical Archimedean copulas (LSHAC): Theory and empirical tests," Journal of Banking & Finance, Elsevier, vol. 69(C), pages 20-36.
    10. Ressel Paul, 2023. "Functions operating on several multivariate distribution functions," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-11, January.
    11. Mai, Jan-Frederik & Scherer, Matthias, 2012. "H-extendible copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 151-160.
    12. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Durante Fabrizio & Sánchez Juan Fernández & Sempi Carlo, 2018. "A note on bivariate Archimax copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 178-182, October.
    14. Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Other publications TiSEM edc722e6-cc70-4221-87a2-8, Tilburg University, School of Economics and Management.
    15. Segers, Johan & Uyttendaele, Nathan, 2013. "Nonparametric estimation of the tree structure of a nested Archimedean copula," LIDAM Discussion Papers ISBA 2013009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Jan-Frederik Mai & Steffen Schenk & Matthias Scherer, 2017. "Two Novel Characterizations of Self-Decomposability on the Half-Line," Journal of Theoretical Probability, Springer, vol. 30(1), pages 365-383, March.
    17. Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
    18. Mhalla, Linda & Chavez-Demoulin, Valérie & Naveau, Philippe, 2017. "Non-linear models for extremal dependence," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 49-66.
    19. Marcon, Giulia & Padoan, Simone & Naveau, Philippe & Muliere, Pietro & Segers, Johan, 2016. "Multivariate Nonparametric Estimation of the Pickands Dependence Function using Bernstein Polynomials," LIDAM Discussion Papers ISBA 2016020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:7:y:2019:i:1:p:247-258:n:13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.