IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02277020.html
   My bibliography  Save this paper

Asymptotic Domination of Sample Maxima

Author

Listed:
  • Enkelejd Hashorva

    (UNIL - Université de Lausanne = University of Lausanne)

  • Didier Rullière

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

Abstract

For a given random sample from some underlying multivariate distribution F we consider the domination of the component-wise maxima by some independent random vector W with underlying distribution function G. We show that the probability that certain components of the sample maxima are dominated by the corresponding components of W can be approximated under the assumptions that both F and G are in the max-domain of attraction of some max-stable distribution function F and G, respectively. We study further some basic properties of the dominated components of sample maxima by W .

Suggested Citation

  • Enkelejd Hashorva & Didier Rullière, 2020. "Asymptotic Domination of Sample Maxima," Post-Print hal-02277020, HAL.
  • Handle: RePEc:hal:journl:hal-02277020
    DOI: 10.1016/j.spl.2020.108703
    Note: View the original document on HAL open archive server: https://hal.science/hal-02277020
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02277020/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.spl.2020.108703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Genest, Christian & Rivest, Louis-Paul, 1989. "A characterization of gumbel's family of extreme value distributions," Statistics & Probability Letters, Elsevier, vol. 8(3), pages 207-211, August.
    2. Hashorva, Enkelejd & Hüsler, Jürg, 2005. "Multiple maxima in multivariate samples," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 11-17, November.
    3. Stoev, Stilian & Wang, Yizao, 2019. "Exchangeable random partitions from max-infinitely-divisible distributions," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 50-56.
    4. Clément Dombry & Mathieu Ribatet & Stilian Stoev, 2018. "Probabilities of Concurrent Extremes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1565-1582, October.
    5. Gnedin, Alexander V., 1998. "Records from a multivariate normal sample," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 11-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashorva Enkelejd, 2016. "Domination of sample maxima and related extremal dependence measures," Dependence Modeling, De Gruyter, vol. 6(1), pages 88-101, May.
    2. Clément Dombry & Michael Falk & Maximilian Zott, 2019. "On Functional Records and Champions," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1252-1277, September.
    3. Enkelejd Hashorva & Didier Rullière, 2019. "Asymptotic Domination Of Sample Maxima," Working Papers hal-02277020, HAL.
    4. Ismihan Bayramoglu, 2016. "On the records of multivariate random sequences," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(6), pages 725-747, August.
    5. Hashorva, Enkelejd & Hüsler, Jürg, 2005. "Multiple maxima in multivariate samples," Statistics & Probability Letters, Elsevier, vol. 75(1), pages 11-17, November.
    6. repec:hum:wpaper:sfb649dp2009-014 is not listed on IDEAS
    7. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    8. Mainik Georg & Rüschendorf Ludger, 2012. "Ordering of multivariate risk models with respect to extreme portfolio losses," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 73-106, March.
    9. Mazo, Gildas & Girard, Stéphane & Forbes, Florence, 2015. "A class of multivariate copulas based on products of bivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 363-376.
    10. Matthieu Garcin & Maxime L. D. Nicolas, 2021. "Nonparametric estimator of the tail dependence coefficient: balancing bias and variance," Papers 2111.11128, arXiv.org, revised Jul 2023.
    11. Hashorva, Enkelejd & Hüsler, Jürg, 2002. "Remarks on compound Poisson approximation of Gaussian random sequences," Statistics & Probability Letters, Elsevier, vol. 57(1), pages 1-8, March.
    12. Einmahl, John & Segers, Johan, 2020. "Empirical Tail Copulas for Functional Data," Other publications TiSEM edc722e6-cc70-4221-87a2-8, Tilburg University, School of Economics and Management.
    13. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    14. Tankov, Peter, 2016. "Tails of weakly dependent random vectors," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 73-86.
    15. Okhrin Ostap & Okhrin Yarema & Schmid Wolfgang, 2013. "Properties of hierarchical Archimedean copulas," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 21-54, March.
    16. Segers, J.J.J., 2004. "Non-Parametric Inference for Bivariate Extreme-Value Copulas," Discussion Paper 2004-91, Tilburg University, Center for Economic Research.
    17. Dutfoy Anne & Parey Sylvie & Roche Nicolas, 2014. "Multivariate Extreme Value Theory - A Tutorial with Applications to Hydrology and Meteorology," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-19, June.
    18. Ressel, Paul, 2011. "A revision of Kimberling's results -- With an application to max-infinite divisibility of some Archimedean copulas," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 207-211, February.
    19. Hofert, Marius & Huser, Raphaël & Prasad, Avinash, 2018. "Hierarchical Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 195-211.
    20. Yongzhao Chen & Ka Chun Cheung & Sheung Chi Phillip Yam & Fei Lung Yuen & Jia Zeng, 2023. "On the Diversification Effect in Solvency II for Extremely Dependent Risks," Risks, MDPI, vol. 11(8), pages 1-22, August.
    21. repec:hum:wpaper:sfb649dp2010-022 is not listed on IDEAS
    22. Capéraà, Philippe & Fougères, Anne-Laure & Genest, Christian, 2000. "Bivariate Distributions with Given Extreme Value Attractor," Journal of Multivariate Analysis, Elsevier, vol. 72(1), pages 30-49, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02277020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.