IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v102y2011i3p393-404.html
   My bibliography  Save this article

Monotonicity properties of multivariate distribution and survival functions -- With an application to Lévy-frailty copulas

Author

Listed:
  • Ressel, Paul

Abstract

The monotonicity properties of multivariate distribution functions are definitely more complicated than in the univariate case. We show that they fit perfectly well into the general theory of completely monotone and alternating functions on abelian semigroups. This allows us to prove a correspondence theorem which generalizes the classical version in two respects: the function in question may be defined on rather arbitrary product sets in , and it need not be grounded, i.e. disappear at the lower-left boundary. In 2009 a greatly interesting class of copulas was discovered by Mai and Scherer (cf. Mai and Scherer (2009) [4]), connecting in a very surprising way complete monotonicity with respect to the maximum operation on and with respect to ordinary addition on . Based on the preceding results, we give another proof of this result.

Suggested Citation

  • Ressel, Paul, 2011. "Monotonicity properties of multivariate distribution and survival functions -- With an application to Lévy-frailty copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 393-404, March.
  • Handle: RePEc:eee:jmvana:v:102:y:2011:i:3:p:393-404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00207-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mai, Jan-Frederik & Scherer, Matthias, 2009. "Lévy-frailty copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1567-1585, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ressel Paul, 2018. "A multivariate version of Williamson’s theorem, ℓ-symmetric survival functions, and generalized Archimedean copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 356-368, December.
    2. Paul Ressel, 2013. "Finite Exchangeability, Lévy-Frailty Copulas and Higher-Order Monotonic Sequences," Journal of Theoretical Probability, Springer, vol. 26(3), pages 666-675, September.
    3. Ressel Paul, 2023. "Functions operating on several multivariate distribution functions," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-11, January.
    4. Ressel, Paul, 2013. "Homogeneous distributions—And a spectral representation of classical mean values and stable tail dependence functions," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 246-256.
    5. Shenkman, Natalia, 2017. "A natural parametrization of multivariate distributions with limited memory," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 234-251.
    6. Mai, Jan-Frederik & Scherer, Matthias, 2012. "H-extendible copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 151-160.
    7. Molchanov, Ilya & Strokorb, Kirstin, 2016. "Max-stable random sup-measures with comonotonic tail dependence," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2835-2859.
    8. Ressel Paul, 2019. "Copulas, stable tail dependence functions, and multivariate monotonicity," Dependence Modeling, De Gruyter, vol. 7(1), pages 247-258, January.
    9. Jan-Frederik Mai & Steffen Schenk & Matthias Scherer, 2017. "Two Novel Characterizations of Self-Decomposability on the Half-Line," Journal of Theoretical Probability, Springer, vol. 30(1), pages 365-383, March.
    10. Ressel, Paul, 2012. "Functions operating on multivariate distribution and survival functions—With applications to classical mean-values and to copulas," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 55-67.
    11. Mai, Jan-Frederik & Scherer, Matthias & Shenkman, Natalia, 2013. "Multivariate geometric distributions, (logarithmically) monotone sequences, and infinitely divisible laws," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 457-480.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadarajah, Saralees, 2015. "Expansions for bivariate copulas," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 77-84.
    2. Jan-Frederik Mai & Steffen Schenk & Matthias Scherer, 2017. "Two Novel Characterizations of Self-Decomposability on the Half-Line," Journal of Theoretical Probability, Springer, vol. 30(1), pages 365-383, March.
    3. Mai Jan-Frederik, 2014. "A note on the Galambos copula and its associated Bernstein function," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-8, March.
    4. Beer, Simone & Braun, Alexander & Marugg, Andrin, 2019. "Pricing industry loss warranties in a Lévy–Frailty framework," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 171-181.
    5. Fabrizio Durante & Marius Hofert & Matthias Scherer, 2010. "Multivariate Hierarchical Copulas with Shocks," Methodology and Computing in Applied Probability, Springer, vol. 12(4), pages 681-694, December.
    6. Shenkman, Natalia, 2017. "A natural parametrization of multivariate distributions with limited memory," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 234-251.
    7. Mai Jan-Frederik, 2020. "The de Finetti structure behind some norm-symmetric multivariate densities with exponential decay," Dependence Modeling, De Gruyter, vol. 8(1), pages 210-220, January.
    8. Baglioni, Angelo & Cherubini, Umberto, 2013. "Within and between systemic country risk. Theory and evidence from the sovereign crisis in Europe," Journal of Economic Dynamics and Control, Elsevier, vol. 37(8), pages 1581-1597.
    9. Durante, Fabrizio & Fernández Sánchez, Juan & Trutschnig, Wolfgang, 2014. "Multivariate copulas with hairpin support," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 323-334.
    10. Mai, Jan-Frederik, 2018. "Extreme-value copulas associated with the expected scaled maximum of independent random variables," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 50-61.
    11. Mai, Jan-Frederik & Scherer, Matthias, 2010. "The Pickands representation of survival Marshall-Olkin copulas," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 357-360, March.
    12. Mai, Jan-Frederik & Scherer, Matthias, 2012. "H-extendible copulas," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 151-160.
    13. Mai, Jan-Frederik & Scherer, Matthias & Shenkman, Natalia, 2013. "Multivariate geometric distributions, (logarithmically) monotone sequences, and infinitely divisible laws," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 457-480.
    14. Paul Ressel, 2013. "Finite Exchangeability, Lévy-Frailty Copulas and Higher-Order Monotonic Sequences," Journal of Theoretical Probability, Springer, vol. 26(3), pages 666-675, September.
    15. Brigo, Damiano & Mai, Jan-Frederik & Scherer, Matthias, 2016. "Markov multi-variate survival indicators for default simulation as a new characterization of the Marshall–Olkin law," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 60-66.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:102:y:2011:i:3:p:393-404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.