IDEAS home Printed from https://ideas.repec.org/a/bpj/ijbist/v7y2011i1n8.html
   My bibliography  Save this article

Simultaneous Bayesian Inference for Linear, Nonlinear and Semiparametric Mixed-Effects Models with Skew-Normality and Measurement Errors in Covariates

Author

Listed:
  • Huang Yangxin
  • Chen Ren
  • Dagne Getachew

Abstract

In recent years, various mixed-effects models have been suggested for estimating viral decay rates in HIV dynamic models for complex longitudinal data. Among those models are linear mixed-effects (LME), nonlinear mixed-effects (NLME), and semiparametric nonlinear mixed-effects (SNLME) models. However, a critical question is whether these models produce coherent estimates of viral decay rates, and if not, which model is appropriate and should be used in practice. In addition, one often assumes that a model random error is normally distributed, but the normality assumption may be unrealistic, particularly if the data exhibit skewness. Moreover, some covariates such as CD4 cell count may be often measured with substantial errors. This paper addresses these issues simultaneously by jointly modeling the response variable with skewness and a covariate process with measurement errors using a Bayesian approach to investigate how estimated parameters are changed or different under these three models. A real data set from an AIDS clinical trial study was used to illustrate the proposed models and methods. It was found that there was a significant incongruity in the estimated decay rates in viral loads based on the three mixed-effects models, suggesting that the decay rates estimated by using Bayesian LME or NLME joint models should be interpreted differently from those estimated by using Bayesian SNLME joint models. The findings also suggest that the Bayesian SNLME joint model is preferred to other models because an arbitrary data truncation is not necessary; and it is also shown that the models with a skew-normal distribution and/or measurement errors in covariate may achieve reliable results when the data exhibit skewness.

Suggested Citation

  • Huang Yangxin & Chen Ren & Dagne Getachew, 2011. "Simultaneous Bayesian Inference for Linear, Nonlinear and Semiparametric Mixed-Effects Models with Skew-Normality and Measurement Errors in Covariates," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-28, January.
  • Handle: RePEc:bpj:ijbist:v:7:y:2011:i:1:n:8
    DOI: 10.2202/1557-4679.1292
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1557-4679.1292
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1557-4679.1292?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reinaldo B. Arellano‐Valle & Adelchi Azzalini, 2006. "On the Unification of Families of Skew‐normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 561-574, September.
    2. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    3. Yangxin Huang & Dacheng Liu & Hulin Wu, 2006. "Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System," Biometrics, The International Biometric Society, vol. 62(2), pages 413-423, June.
    4. Wei Liu & Lang Wu, 2007. "Simultaneous Inference for Semiparametric Nonlinear Mixed-Effects Models with Covariate Measurement Errors and Missing Responses," Biometrics, The International Biometric Society, vol. 63(2), pages 342-350, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adeniyi, Isaac Adeola, 2020. "Bayesian Generalized Linear Mixed Effects Models Using Normal-Independent Distributions: Formulation and Applications," MPRA Paper 99165, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangxin Huang & Getachew Dagne, 2011. "A Bayesian Approach to Joint Mixed-Effects Models with a Skew-Normal Distribution and Measurement Errors in Covariates," Biometrics, The International Biometric Society, vol. 67(1), pages 260-269, March.
    2. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    3. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.
    4. Mondal, Sagnik & Genton, Marc G., 2024. "A multivariate skew-normal-Tukey-h distribution," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    5. Phil D. Young & Joshua D. Patrick & John A. Ramey & Dean M. Young, 2020. "An Alternative Matrix Skew-Normal Random Matrix and Some Properties," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 28-49, February.
    6. Lu, Xiaosun & Huang, Yangxin & Zhu, Yiliang, 2016. "Finite mixture of nonlinear mixed-effects joint models in the presence of missing and mismeasured covariate, with application to AIDS studies," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 119-130.
    7. Arellano-Valle, Reinaldo B. & Genton, Marc G. & Loschi, Rosangela H., 2009. "Shape mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 91-101, January.
    8. Young, Phil D. & Harvill, Jane L. & Young, Dean M., 2016. "A derivation of the multivariate singular skew-normal density function," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 40-45.
    9. Zareifard, Hamid & Jafari Khaledi, Majid, 2013. "Non-Gaussian modeling of spatial data using scale mixing of a unified skew Gaussian process," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 16-28.
    10. F. Kahrari & C. S. Ferreira & R. B. Arellano-Valle, 2019. "Skew-Normal-Cauchy Linear Mixed Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 185-202, December.
    11. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    12. Huang Yangxin & Chen Jiaqing & Yan Chunning, 2012. "Mixed-Effects Joint Models with Skew-Normal Distribution for HIV Dynamic Response with Missing and Mismeasured Time-Varying Covariate," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-30, November.
    13. Cabral, Celso Rômulo Barbosa & Lachos, Víctor Hugo & Zeller, Camila Borelli, 2014. "Multivariate measurement error models using finite mixtures of skew-Student t distributions," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 179-198.
    14. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    15. Antonio Canale & Euloge Clovis Kenne Pagui & Bruno Scarpa, 2016. "Bayesian modeling of university first-year students' grades after placement test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3015-3029, December.
    16. Angela Montanari & Cinzia Viroli, 2010. "A skew-normal factor model for the analysis of student satisfaction towards university courses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 473-487.
    17. Dagne Getachew & Huang Yangxin, 2012. "Bayesian inference for a nonlinear mixed-effects Tobit model with multivariate skew-t distributions: application to AIDS studies," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-24, September.
    18. Lin, Tsung-I & McLachlan, Geoffrey J. & Lee, Sharon X., 2016. "Extending mixtures of factor models using the restricted multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 398-413.
    19. Raúl Alejandro Morán-Vásquez & Edwin Zarrazola & Daya K. Nagar, 2022. "Some Statistical Aspects of the Truncated Multivariate Skew- t Distribution," Mathematics, MDPI, vol. 10(15), pages 1-14, August.
    20. Marco Minozzo, 2011. "On the existence of some skew normal stationary processes," Working Papers 20/2011, University of Verona, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:ijbist:v:7:y:2011:i:1:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.