IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i8p1208-1217.html
   My bibliography  Save this article

Heteroscedastic nonlinear regression models based on scale mixtures of skew-normal distributions

Author

Listed:
  • Lachos, Victor H.
  • Bandyopadhyay, Dipankar
  • Garay, Aldo M.

Abstract

An extension of some standard likelihood based procedures to heteroscedastic nonlinear regression models under scale mixtures of skew-normal (SMSN) distributions is developed. We derive a simple EM-type algorithm for iteratively computing maximum likelihood (ML) estimates and the observed information matrix is derived analytically. Simulation studies demonstrate the robustness of this flexible class against outlying and influential observations, as well as nice asymptotic properties of the proposed EM-type ML estimates. Finally, the methodology is illustrated using an ultrasonic calibration data.

Suggested Citation

  • Lachos, Victor H. & Bandyopadhyay, Dipankar & Garay, Aldo M., 2011. "Heteroscedastic nonlinear regression models based on scale mixtures of skew-normal distributions," Statistics & Probability Letters, Elsevier, vol. 81(8), pages 1208-1217, August.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1208-1217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715211001027
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamshidian, Mortaza, 1999. "Adaptive Robust Regression by Using a Nonlinear Regression Program," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 4(i06).
    2. Xie, Feng-Chang & Lin, Jin-Guan & Wei, Bo-Cheng, 2009. "Diagnostics for skew-normal nonlinear regression models with AR(1) errors," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4403-4416, October.
    3. Vanegas, Luis Hernando & Cysneiros, Francisco José A., 2010. "Assessment of diagnostic procedures in symmetrical nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1002-1016, April.
    4. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    5. Basso, Rodrigo M. & Lachos, Víctor H. & Cabral, Celso Rômulo Barbosa & Ghosh, Pulak, 2010. "Robust mixture modeling based on scale mixtures of skew-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2926-2941, December.
    6. Vicente Cancho & Víctor Lachos & Edwin Ortega, 2010. "A nonlinear regression model with skew-normal errors," Statistical Papers, Springer, vol. 51(3), pages 547-558, September.
    7. Xie, Feng-Chang & Wei, Bo-Cheng & Lin, Jin-Guan, 2009. "Homogeneity diagnostics for skew-normal nonlinear regression models," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 821-827, March.
    8. Cysneiros, Francisco José A. & Vanegas, Luis Hernando, 2008. "Residuals and their statistical properties in symmetrical nonlinear models," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3269-3273, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferdos Gorji & Mina Aminghafari, 2020. "Robust Nonparametric Regression for Heavy-Tailed Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 277-291, September.
    2. M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.
    3. Hu, Hao & Yao, Weixin & Wu, Yichao, 2017. "The robust EM-type algorithms for log-concave mixtures of regression models," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 14-26.
    4. Luis Vanegas & Gilberto Paula, 2015. "A semiparametric approach for joint modeling of median and skewness," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 110-135, March.
    5. Zareifard, Hamid & Jafari Khaledi, Majid, 2013. "Non-Gaussian modeling of spatial data using scale mixing of a unified skew Gaussian process," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 16-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cancho, Vicente G. & Dey, Dipak K. & Lachos, Victor H. & Andrade, Marinho G., 2011. "Bayesian nonlinear regression models with scale mixtures of skew-normal distributions: Estimation and case influence diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 588-602, January.
    2. Chunzheng Cao & Mengqian Chen & Yahui Wang & Jian Qing Shi, 2018. "Heteroscedastic replicated measurement error models under asymmetric heavy-tailed distributions," Computational Statistics, Springer, vol. 33(1), pages 319-338, March.
    3. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Vanegas, Luis Hernando & Rondón, Luz Marina & Cysneiros, Francisco José A., 2012. "Diagnostic procedures in Birnbaum–Saunders nonlinear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1662-1680.
    5. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    6. Camila Zeller & Rignaldo Carvalho & Victor Lachos, 2012. "On diagnostics in multivariate measurement error models under asymmetric heavy-tailed distributions," Statistical Papers, Springer, vol. 53(3), pages 665-683, August.
    7. Luis Vanegas & Gilberto Paula, 2015. "A semiparametric approach for joint modeling of median and skewness," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 110-135, March.
    8. Chunzheng Cao & Yahui Wang & Jian Qing Shi & Jinguan Lin, 2018. "Measurement Error Models for Replicated Data Under Asymmetric Heavy-Tailed Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 52(2), pages 531-553, August.
    9. Akram Hoseinzadeh & Mohsen Maleki & Zahra Khodadadi, 2021. "Heteroscedastic nonlinear regression models using asymmetric and heavy tailed two-piece distributions," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 451-467, September.
    10. Abbas Mahdavi & Vahid Amirzadeh & Ahad Jamalizadeh & Tsung-I Lin, 2021. "Maximum likelihood estimation for scale-shape mixtures of flexible generalized skew normal distributions via selection representation," Computational Statistics, Springer, vol. 36(3), pages 2201-2230, September.
    11. Cabral, Celso Rômulo Barbosa & Lachos, Víctor Hugo & Prates, Marcos O., 2012. "Multivariate mixture modeling using skew-normal independent distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 126-142, January.
    12. Raúl Alejandro Morán-Vásquez & Edwin Zarrazola & Daya K. Nagar, 2023. "Some Theoretical and Computational Aspects of the Truncated Multivariate Skew-Normal/Independent Distributions," Mathematics, MDPI, vol. 11(16), pages 1-16, August.
    13. Sharon Lee & Geoffrey McLachlan, 2013. "Model-based clustering and classification with non-normal mixture distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 427-454, November.
    14. Víctor Leiva & Shuangzhe Liu & Lei Shi & Francisco José A. Cysneiros, 2016. "Diagnostics in elliptical regression models with stochastic restrictions applied to econometrics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(4), pages 627-642, March.
    15. Wraith, Darren & Forbes, Florence, 2015. "Location and scale mixtures of Gaussians with flexible tail behaviour: Properties, inference and application to multivariate clustering," Computational Statistics & Data Analysis, Elsevier, vol. 90(C), pages 61-73.
    16. García, V.J. & Gómez-Déniz, E. & Vázquez-Polo, F.J., 2010. "A new skew generalization of the normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 54(8), pages 2021-2034, August.
    17. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    18. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    19. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    20. Antonio Parisi & B. Liseo, 2018. "Objective Bayesian analysis for the multivariate skew-t model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 277-295, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:8:p:1208-1217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.