IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v72y2014i3p317-330.html
   My bibliography  Save this article

The extended skew Gaussian process for regression

Author

Listed:
  • M. Alodat
  • M. AL-Rawwash

Abstract

In this article, we propose a generalization to the Gaussian process regression(GPR) model called the extended skew Gaussian process for regression (ESGP) model. The ESGP model works better than the GPR model when the errors are skewed. We derive the predictive distribution for the ESGP model at a new input. Also we apply the ESGP model to FOREX data and we find that it fits the Forex data better than the GPR model. Copyright Sapienza Università di Roma 2014

Suggested Citation

  • M. Alodat & M. AL-Rawwash, 2014. "The extended skew Gaussian process for regression," METRON, Springer;Sapienza Università di Roma, vol. 72(3), pages 317-330, October.
  • Handle: RePEc:spr:metron:v:72:y:2014:i:3:p:317-330
    DOI: 10.1007/s40300-014-0046-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s40300-014-0046-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s40300-014-0046-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marco Minozzo, 2011. "On the existence of some skew normal stationary processes," Working Papers 20/2011, University of Verona, Department of Economics.
    2. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    3. Vicente Cancho & Víctor Lachos & Edwin Ortega, 2010. "A nonlinear regression model with skew-normal errors," Statistical Papers, Springer, vol. 51(3), pages 547-558, September.
    4. Brahim-Belhouari, Sofiane & Bermak, Amine, 2004. "Gaussian process for nonstationary time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 47(4), pages 705-712, November.
    5. Zareifard, Hamid & Jafari Khaledi, Majid, 2013. "Non-Gaussian modeling of spatial data using scale mixing of a unified skew Gaussian process," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 16-28.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakae Oya & Teruo Nakatsuma, 2021. "Identification in Bayesian Estimation of the Skewness Matrix in a Multivariate Skew-Elliptical Distribution," Papers 2108.04019, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco Minozzo & Luca Bagnato, 2021. "A unified skew‐normal geostatistical factor model," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.
    2. Jiangyan Wang & Miao Yang & Anandamayee Majumdar, 2018. "Comparative study and sensitivity analysis of skewed spatial processes," Computational Statistics, Springer, vol. 33(1), pages 75-98, March.
    3. Chunzheng Cao & Mengqian Chen & Yahui Wang & Jian Qing Shi, 2018. "Heteroscedastic replicated measurement error models under asymmetric heavy-tailed distributions," Computational Statistics, Springer, vol. 33(1), pages 319-338, March.
    4. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Kassahun Abere Ayalew & Samuel Manda & Bo Cai, 2021. "A Comparison of Bayesian Spatial Models for HIV Mapping in South Africa," IJERPH, MDPI, vol. 18(21), pages 1-10, October.
    6. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    7. Bernardi, Mauro, 2013. "Risk measures for skew normal mixtures," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1819-1824.
    8. Masoud Faridi & Majid Jafari Khaledi, 2022. "The polar-generalized normal distribution: properties, Bayesian estimation and applications," Statistical Papers, Springer, vol. 63(2), pages 571-603, April.
    9. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    10. Katherine Elizabeth Castellano & Andrew Dean Ho, 2013. "Contrasting OLS and Quantile Regression Approaches to Student “Growth†Percentiles," Journal of Educational and Behavioral Statistics, , vol. 38(2), pages 190-215, April.
    11. repec:wrk:wrkemf:27 is not listed on IDEAS
    12. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    13. J. T. A. S. Ferreira & M. F. J. Steel, 2004. "On Describing Multivariate Skewness: A Directional Approach," Econometrics 0409010, University Library of Munich, Germany.
    14. Lachos, Victor H. & Prates, Marcos O. & Dey, Dipak K., 2021. "Heckman selection-t model: Parameter estimation via the EM-algorithm," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    15. Anna Gottard & Simona Pacillo, 2007. "On the impact of contaminations in graphical Gaussian models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 343-354, February.
    16. M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.
    17. Fang, B.Q., 2006. "Sample mean, covariance and T2 statistic of the skew elliptical model," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1675-1690, August.
    18. Alexey Balaev, 2011. "Modeling multivariate parametric densities of financial returns (in Russian)," Quantile, Quantile, issue 9, pages 39-60, July.
    19. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    20. Anna Gottard & Simona Pacillo, 2007. "On the impact of contaminations in graphical Gaussian models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 343-354, February.
    21. Huang Yangxin & Chen Ren & Dagne Getachew, 2011. "Simultaneous Bayesian Inference for Linear, Nonlinear and Semiparametric Mixed-Effects Models with Skew-Normality and Measurement Errors in Covariates," The International Journal of Biostatistics, De Gruyter, vol. 7(1), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:72:y:2014:i:3:p:317-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.