IDEAS home Printed from https://ideas.repec.org/p/tsa/wpaper/0082mss.html
   My bibliography  Save this paper

Testing of a Structures Covariance Matrix for Three-Level Repeated Measures Data

Author

Listed:
  • Anuradha Roy

    (The University of Texas at San Antonio)

  • Ricardo Leiva

    (F.C.E., Universidad Nacional de Cuyo)

Abstract

This paper considers the problem of estimating, and testing for, a Kronecker product covariance structure of three-level (multiple time points (p), multiple sites (u), and multiple response variables (q)) multivariate data. Testing of such covariance structures is potentially important when not enough samples are available to estimate the unstructures variance-covariance matrix. This hypothesis procedure not only can test the hypothesis on three-level multivariate data, but also can test the hypotheses on two-level multivariate data as special cases. We provide the maximum likelihood estimates of the unknown population parameters. The test is implemented with a real data set.

Suggested Citation

  • Anuradha Roy & Ricardo Leiva, 2008. "Testing of a Structures Covariance Matrix for Three-Level Repeated Measures Data," Working Papers 0037, College of Business, University of Texas at San Antonio.
  • Handle: RePEc:tsa:wpaper:0082mss
    as

    Download full text from publisher

    File URL: http://interim.business.utsa.edu/wps/MSS/0037MSS-253-2008.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Justine Shults & Ardythe L. Morrow, 2002. "Use of Quasi–Least Squares to Adjust for Two Levels of Correlation," Biometrics, The International Biometric Society, vol. 58(3), pages 521-530, September.
    2. Lu, Nelson & Zimmerman, Dale L., 2005. "The likelihood ratio test for a separable covariance matrix," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 449-457, July.
    3. Dayanand Naik & Shantha Rao, 2001. "Analysis of multivariate repeated measures data with a Kronecker product structured covariance matrix," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(1), pages 91-105.
    4. Leiva, Ricardo, 2007. "Linear discrimination with equicorrelated training vectors," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 384-409, February.
    5. Ritter, Gunter & Gallegos, María Teresa, 2002. "Bayesian Object Identification: Variants," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 301-334, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pamela C. Smith & Dana A. Forgione, 2008. "Global Outsourcing of Healthcare: A Medical Tourism Decision Model," Working Papers 0033, College of Business, University of Texas at San Antonio.
    2. Kihoon Yoon & Daijin Ko & Carolina B. Livi & Nathan Trinklein & Mark Doderer & Stephen Kwek & Luiz O. F. Penalva, 2008. "Over-represented sequences located on UTRs are potentially involved in regulatory functions," Working Papers 0053, College of Business, University of Texas at San Antonio.
    3. Timothy Opheim & Anuradha Roy, 2021. "Linear models for multivariate repeated measures data with block exchangeable covariance structure," Computational Statistics, Springer, vol. 36(3), pages 1931-1963, September.
    4. Roy, Anuradha & Leiva, Ricardo, 2008. "Likelihood ratio tests for triply multivariate data with structured correlation on spatial repeated measurements," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1971-1980, September.
    5. Manceur, A.M. & Dutilleul, P., 2013. "Unbiased modified likelihood ratio tests for simple and double separability of a variance–covariance structure," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 631-636.
    6. Martin Ohlson & Zhanna Andrushchenko & Dietrich Rosen, 2011. "Explicit estimators under m-dependence for a multivariate normal distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(1), pages 29-42, February.
    7. Hao, Chengcheng & Liang, Yuli & Mathew, Thomas, 2016. "Testing variance parameters in models with a Kronecker product covariance structure," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 182-189.
    8. Kohli, Priya & Garcia, Tanya P. & Pourahmadi, Mohsen, 2016. "Modeling the Cholesky factors of covariance matrices of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 145(C), pages 87-100.
    9. Kim, Chulmin & Zimmerman, Dale L., 2012. "Unconstrained models for the covariance structure of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 104-118.
    10. Filipiak, Katarzyna & Klein, Daniel & Roy, Anuradha, 2016. "Score test for a separable covariance structure with the first component as compound symmetric correlation matrix," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 105-124.
    11. Lingzhe Guo & Reza Modarres, 2020. "Testing the equality of matrix distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 289-307, June.
    12. Viroli, Cinzia, 2012. "On matrix-variate regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 296-309.
    13. Filipiak, Katarzyna & Klein, Daniel, 2017. "Estimation of parameters under a generalized growth curve model," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 73-86.
    14. Amitrajeet A. Batabyal & Hamid Beladi, 2015. "Optimal Transport Provision To A Tourist Destination: A Mechanism Design Approach," Working Papers 0141mss, College of Business, University of Texas at San Antonio.
    15. Katarzyna Filipiak & Daniel Klein & Anuradha Roy, 2015. "Score test for a separable covariance structure with the first component as compound symmetric correlation matrix," Working Papers 0148mss, College of Business, University of Texas at San Antonio.
    16. Anuradha Roy & Ricardo Leiva, 2008. "An Extension of the Traditional Classi cation Rules: the Case of Non-Random Samples," Working Papers 0057, College of Business, University of Texas at San Antonio.
    17. Ricardo Leiva & Anuradha Roy, 2016. "Multi-level multivariate normal distribution with self-similar compound symmetry covariance matrix," Working Papers 0146mss, College of Business, University of Texas at San Antonio.
    18. Roy, Anuradha & Leiva, Ricardo & Žežula, Ivan & Klein, Daniel, 2015. "Testing the equality of mean vectors for paired doubly multivariate observations in blocked compound symmetric covariance matrix setup," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 50-60.
    19. Guggenberger, Patrik & Kleibergen, Frank & Mavroeidis, Sophocles, 2023. "A test for Kronecker Product Structure covariance matrix," Journal of Econometrics, Elsevier, vol. 233(1), pages 88-112.
    20. Driezen, Kassandra & Adriaensen, Frank & Rondinini, Carlo & Doncaster, C. Patrick & Matthysen, Erik, 2007. "Evaluating least-cost model predictions with empirical dispersal data: A case-study using radiotracking data of hedgehogs (Erinaceus europaeus)," Ecological Modelling, Elsevier, vol. 209(2), pages 314-322.

    More about this item

    Keywords

    Kronecker product covariance structure; maximum likelihood estimates; equicorrelated partitioned matrix; three-level multivariate data.;
    All these keywords.

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsa:wpaper:0082mss. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wendy Frost (email available below). General contact details of provider: https://edirc.repec.org/data/cbutsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.