IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v29y1989i1p30-38.html
   My bibliography  Save this article

MANOVA in the multivariate components of variance model

Author

Listed:
  • Mathew, Thomas

Abstract

Conditions are obtained for the multivariate components of variance model to admit a multivariate analysis of variance (MANOVA). MANOVA in this setup is defined as a partition of the sum of squares and sum of products matrix into independent Wishart matrices. A minimal sufficient statistic is exhibited using the terms in the MANOVA and its completeness is discussed. The results are illustrated using examples.

Suggested Citation

  • Mathew, Thomas, 1989. "MANOVA in the multivariate components of variance model," Journal of Multivariate Analysis, Elsevier, vol. 29(1), pages 30-38, April.
  • Handle: RePEc:eee:jmvana:v:29:y:1989:i:1:p:30-38
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(89)90074-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mortarino, Cinzia, 2005. "A decomposition for a stochastic matrix with an application to MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 134-144, January.
    2. Speed, Terence P. & Hicks, Damien G., 2022. "Spectral PCA for MANOVA and data over binary trees," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Mathew, Thomas & Nordström, Kenneth, 1997. "Wishart and Chi-Square Distributions Associated with Matrix Quadratic Forms," Journal of Multivariate Analysis, Elsevier, vol. 61(1), pages 129-143, April.
    4. Hu, Jianhua, 2008. "Wishartness and independence of matrix quadratic forms in a normal random matrix," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 555-571, March.
    5. Kim, Chulmin & Zimmerman, Dale L., 2012. "Unconstrained models for the covariance structure of multivariate longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 104-118.
    6. Stavytskyy Andriy & Prokopenko Oleksandra, 2017. "Investments in Agricultural Machinery and Its Efficiency in Ukraine," Ekonomika (Economics), Sciendo, vol. 96(1), pages 113-130, January.
    7. Masaro, Joe & Wong, Chi Song, 2010. "Wishart-Laplace distributions associated with matrix quadratic forms," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1168-1178, May.
    8. Gupta, Arjun K. & Harrar, Solomon W. & Fujikoshi, Yasunori, 2006. "Asymptotics for testing hypothesis in some multivariate variance components model under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 148-178, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:29:y:1989:i:1:p:30-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.