IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v105y2012i1p45-54.html
   My bibliography  Save this article

Increasing directionally convex orderings of random vectors having the same copula, and their use in comparing ordered data

Author

Listed:
  • Balakrishnan, Narayanaswamy
  • Belzunce, Félix
  • Sordo, Miguel A.
  • Suárez-Llorens, Alfonso

Abstract

In this paper, we establish some results for the increasing convex comparisons of generalized order statistics. First, we prove that if the minimum of two sets of generalized order statistics are ordered in the increasing convex order, then the remaining generalized order statistics are also ordered in the increasing convex order. This result is extended to the increasing directionally convex comparisons of random vectors of generalized order statistics. For establishing this general result, we first prove a new result in that two random vectors with a common conditionally increasing copula are ordered in the increasing directionally convex order if the marginals are ordered in the increasing convex order. This latter result is, of course, of interest in its own right.

Suggested Citation

  • Balakrishnan, Narayanaswamy & Belzunce, Félix & Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2012. "Increasing directionally convex orderings of random vectors having the same copula, and their use in comparing ordered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 45-54.
  • Handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:45-54
    DOI: 10.1016/j.jmva.2011.08.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X1100176X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2011.08.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khaledi, Baha-Eldin & Kochar, Subhash, 2005. "Dependence orderings for generalized order statistics," Statistics & Probability Letters, Elsevier, vol. 73(4), pages 357-367, July.
    2. Miguel Sordo & Héctor Ramos, 2007. "Characterization of stochastic orders by L-functionals," Statistical Papers, Springer, vol. 48(2), pages 249-263, April.
    3. Fathi Manesh, Sirous & Khaledi, Baha-Eldin, 2008. "On the likelihood ratio order for convolutions of independent generalized Rayleigh random variables," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3139-3144, December.
    4. Kochar, Subhash & Ma, Chunsheng, 1999. "Dispersive ordering of convolutions of exponential random variables," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 321-324, July.
    5. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    6. Belzunce, Félix & Ruiz, José M. & Suárez-Llorens, Alfonso, 2008. "On multivariate dispersion orderings based on the standard construction," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 271-281, February.
    7. Philip J. Boland & Taizhong Hu & Moshe Shaked & J. George Shanthikumar, 2002. "Stochastic Ordering of Order Statistics II," International Series in Operations Research & Management Science, in: Moshe Dror & Pierre L’Ecuyer & Ferenc Szidarovszky (ed.), Modeling Uncertainty, chapter 0, pages 607-623, Springer.
    8. Belzunce, Félix & Shaked, Moshe, 2001. "Stochastic comparisons of mixtures of convexly ordered distributions with applications in reliability theory," Statistics & Probability Letters, Elsevier, vol. 53(4), pages 363-372, July.
    9. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    10. Massimo Marinacci & Luigi Montrucchio, 2003. "Ultramodular functions," ICER Working Papers - Applied Mathematics Series 13-2003, ICER - International Centre for Economic Research.
    11. Moshe Shaked & J. George Shanthikumar, 1986. "Multivariate Imperfect Repair," Operations Research, INFORMS, vol. 34(3), pages 437-448, June.
    12. Korwar, Ramesh M., 2002. "On Stochastic Orders for Sums of Independent Random Variables," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 344-357, February.
    13. N. Balakrishnan, 2007. "Progressive censoring methodology: an appraisal," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 211-259, August.
    14. Zhao, Peng & Balakrishnan, N., 2009. "Mean residual life order of convolutions of heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1792-1801, September.
    15. Kochar, Subhash & Xu, Maochao, 2010. "On the right spread order of convolutions of heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 165-176, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Castaño-Martínez, A. & Pigueiras, G. & Sordo, M.A., 2019. "On a family of risk measures based on largest claims," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 92-97.
    2. Antonia Castaño-Martínez & Gema Pigueiras & Georgios Psarrakos & Miguel A. Sordo, 2020. "Increasing concave orderings of linear combinations of order statistics with applications to social welfare," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(6), pages 699-712, August.
    3. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    4. Patricia Ortega-Jiménez & Miguel A. Sordo & Alfonso Suárez-Llorens, 2021. "Stochastic Comparisons of Some Distances between Random Variables," Mathematics, MDPI, vol. 9(9), pages 1-14, April.
    5. Chen Li & Xiaohu Li, 2018. "Preservation of increasing convex/concave order under the formation of parallel/series system of dependent components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(4), pages 445-464, May.
    6. Mesfioui, Mhamed & Denuit, Michel M., 2015. "Comonotonicity, orthant convex order and sums of random variables," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 356-364.
    7. Sordo, Miguel A. & Suárez-Llorens, Alfonso & Bello, Alfonso J., 2015. "Comparison of conditional distributions in portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 62-69.
    8. Mesfioui, Mhamed & Denuit, Michel, 2014. "Comonotonicity, orthant convex order and sums of random variables," LIDAM Discussion Papers ISBA 2014002, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Gbari, Samuel & Denuit, Michel, 2014. "Efficient approximations for numbers of survivors in the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 71-77.
    10. Maryam Esna-Ashari & Narayanaswamy Balakrishnan & Mahdi Alimohammadi, 2023. "HR and RHR orderings of generalized order statistics," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(1), pages 131-148, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Peng, 2011. "Some new results on convolutions of heterogeneous gamma random variables," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 958-976, May.
    2. Félix Belzunce & Carolina Martínez-Riquelme, 2015. "Some results for the comparison of generalized order statistics in the total time on test and excess wealth orders," Statistical Papers, Springer, vol. 56(4), pages 1175-1190, November.
    3. Belzunce, Félix & Ruiz, José M. & Suárez-Llorens, Alfonso, 2008. "On multivariate dispersion orderings based on the standard construction," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 271-281, February.
    4. Zhang, Yiying & Cheung, Ka Chun, 2020. "On the increasing convex order of generalized aggregation of dependent random variables," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 61-69.
    5. Amiri, Mehdi & Izadkhah, Salman & Jamalizadeh, Ahad, 2020. "Linear orderings of the scale mixtures of the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    6. Zhao, Peng & Balakrishnan, N., 2010. "Ordering properties of convolutions of heterogeneous Erlang and Pascal random variables," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 969-974, June.
    7. Zhao, Peng & Hu, Taizhong, 2010. "On hazard rate ordering of the sums of heterogeneous geometric random variables," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 44-51, January.
    8. Belzunce, Félix & Mercader, José A. & Ruiz, José M., 2003. "Multivariate aging properties of epoch times of nonhomogeneous processes," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 335-350, February.
    9. Belzunce, Félix & Suárez-Llorens, Alfonso & Sordo, Miguel A., 2012. "Comparison of increasing directionally convex transformations of random vectors with a common copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 385-390.
    10. Meyer, Margaret & Strulovici, Bruno, 2013. "The Supermodular Stochastic Ordering," CEPR Discussion Papers 9486, C.E.P.R. Discussion Papers.
    11. Müller, Alfred & Scarsini, Marco, 2012. "Fear of loss, inframodularity, and transfers," Journal of Economic Theory, Elsevier, vol. 147(4), pages 1490-1500.
    12. Fathi Manesh, Sirous & Khaledi, Baha-Eldin, 2008. "On the likelihood ratio order for convolutions of independent generalized Rayleigh random variables," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3139-3144, December.
    13. José Pablo Arias‐Nicolás & Félix Belzunce & Olga Núñez‐Barrera & Alfonso Suárez‐Llorens, 2009. "A multivariate IFR notion based on the multivariate dispersive ordering," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 339-358, May.
    14. Farbod Roosta-Khorasani & Gábor Székely, 2015. "Schur properties of convolutions of gamma random variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(8), pages 997-1014, November.
    15. Lihong, Sun & Xinsheng, Zhang, 2005. "Stochastic comparisons of order statistics from gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 112-121, March.
    16. Zhao, Peng & Balakrishnan, N., 2009. "Likelihood ratio ordering of convolutions of heterogeneous exponential and geometric random variables," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1717-1723, August.
    17. Zhao, Peng & Zhang, Yiying, 2012. "On sample ranges in multiple-outlier models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 335-349.
    18. Margaret Meyer & Bruno Strulovici, 2013. "Beyond Correlation: Measuring Interdependence Through Complementarities," Economics Series Working Papers 655, University of Oxford, Department of Economics.
    19. You, Yinping & Li, Xiaohu, 2015. "Functional characterizations of bivariate weak SAI with an application," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 225-231.
    20. Félix Belzunce & Julio Mulero & José María Ruíz & Alfonso Suárez-Llorens, 2015. "On relative skewness for multivariate distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 813-834, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:105:y:2012:i:1:p:45-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.