IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v92y2020icp61-69.html
   My bibliography  Save this article

On the increasing convex order of generalized aggregation of dependent random variables

Author

Listed:
  • Zhang, Yiying
  • Cheung, Ka Chun

Abstract

In this article, we study stochastic properties of the generalized sum of right tail weakly stochastic arrangement increasing (RWSAI) nonnegative random variables accompanied with stochastic arrangement increasing (SAI) Bernoulli variables. In terms of monotonicity, supermodularity/submodularity, and convexity of the bivariate kernel function, sufficient conditions are developed for the increasing convex ordering on the generalized aggregation. Applications in actuarial science including the individual risk model and the reserving capital allocation are presented to highlight our results.

Suggested Citation

  • Zhang, Yiying & Cheung, Ka Chun, 2020. "On the increasing convex order of generalized aggregation of dependent random variables," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 61-69.
  • Handle: RePEc:eee:insuma:v:92:y:2020:i:c:p:61-69
    DOI: 10.1016/j.insmatheco.2020.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668720300317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Xiaoqing & Yuan, Min & Kochar, Subhash C., 2015. "Stochastic comparisons of weighted sums of arrangement increasing random variables," Statistics & Probability Letters, Elsevier, vol. 102(C), pages 42-50.
    2. Cheung, Ka Chun, 2007. "Optimal allocation of policy limits and deductibles," Insurance: Mathematics and Economics, Elsevier, vol. 41(3), pages 382-391, November.
    3. Zhang, Yiying & Zhao, Peng, 2015. "Comparisons on aggregate risks from two sets of heterogeneous portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 124-135.
    4. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    5. Hua, Lei & Cheung, Ka Chun, 2008. "Stochastic orders of scalar products with applications," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 865-872, June.
    6. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    7. Zhuang, Weiwei & Chen, Zijin & Hu, Taizhong, 2009. "Optimal allocation of policy limits and deductibles under distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 409-414, June.
    8. Yosef Rinott & Marco Scarsini & Yaming Yu, 2012. "A Colonel Blotto Gladiator Game," Mathematics of Operations Research, INFORMS, vol. 37(4), pages 574-590, November.
    9. Cai, Jun & Wei, Wei, 2015. "Notions of multivariate dependence and their applications in optimal portfolio selections with dependent risks," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 156-169.
    10. Manesh, Sirous Fathi & Khaledi, Baha-Eldin, 2015. "Allocations of policy limits and ordering relations for aggregate remaining claims," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 9-14.
    11. Kochar, Subhash & Xu, Maochao, 2010. "On the right spread order of convolutions of heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 165-176, January.
    12. You, Yinping & Li, Xiaohu, 2015. "Functional characterizations of bivariate weak SAI with an application," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 225-231.
    13. Li, Xiaohu & You, Yinping, 2012. "On allocation of upper limits and deductibles with dependent frequencies and comonotonic severities," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 423-429.
    14. Li, Chen & Li, Xiaohu, 2016. "Sufficient conditions for ordering aggregate heterogeneous random claim amounts," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 406-413.
    15. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    16. Xu, Maochao & Hu, Taizhong, 2012. "Stochastic comparisons of capital allocations with applications," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 293-298.
    17. Zhang, Yiying & Li, Xiaohu & Cheung, Ka Chun, 2018. "On Heterogeneity In The Individual Model With Both Dependent Claim Occurrences And Severities," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 817-839, May.
    18. Cheung, Ka Chun & Yang, Hailiang, 2004. "Ordering optimal proportions in the asset allocation problem with dependent default risks," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 595-609, December.
    19. Cheung, Ka Chun, 2006. "Optimal portfolio problem with unknown dependency structure," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 167-175, February.
    20. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    21. Cai, Jun & Wei, Wei, 2014. "Some new notions of dependence with applications in optimal allocation problems," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 200-209.
    22. Frostig, Esther & Zaks, Yaniv & Levikson, Benny, 2007. "Optimal pricing for a heterogeneous portfolio for a given risk factor and convex distance measure," Insurance: Mathematics and Economics, Elsevier, vol. 40(3), pages 459-467, May.
    23. Korwar, Ramesh M., 2002. "On Stochastic Orders for Sums of Independent Random Variables," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 344-357, February.
    24. Frostig, Esther, 2001. "A comparison between homogeneous and heterogeneous portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 29(1), pages 59-71, August.
    25. Laeven, Roger J. A. & Goovaerts, Marc J., 2004. "An optimization approach to the dynamic allocation of economic capital," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 299-319, October.
    26. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. You, Yinping & Li, Xiaohu, 2015. "Functional characterizations of bivariate weak SAI with an application," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 225-231.
    2. Pan Xiaoqing & Li Xiaohu, 2017. "On capital allocation for stochastic arrangement increasing actuarial risks," Dependence Modeling, De Gruyter, vol. 5(1), pages 145-153, January.
    3. Yinping You & Xiaohu Li & Rui Fang, 2021. "On coverage limits and deductibles for SAI loss severities," Annals of Operations Research, Springer, vol. 297(1), pages 341-357, February.
    4. Xu, Maochao & Hu, Taizhong, 2012. "Stochastic comparisons of capital allocations with applications," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 293-298.
    5. Cheung, Ka Chun, 2009. "Applications of conditional comonotonicity to some optimization problems," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 89-93, August.
    6. Cai, Jun & Wang, Ying, 2021. "Optimal capital allocation principles considering capital shortfall and surplus risks in a hierarchical corporate structure," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 329-349.
    7. Yiying Zhang & Weiyong Ding & Peng Zhao, 2018. "On total capacity of k‐out‐of‐n systems with random weights," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(4), pages 347-359, June.
    8. Qi Feng & J. George Shanthikumar, 2018. "Arrangement Increasing Resource Allocation," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 935-955, September.
    9. Li, Chen & Li, Xiaohu, 2019. "Preservation of WSAI under default transforms and its application in allocating assets with dependent realizable returns," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 84-91.
    10. Zhang, Yiying & Zhao, Peng, 2015. "Comparisons on aggregate risks from two sets of heterogeneous portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 124-135.
    11. Manesh, Sirous Fathi & Khaledi, Baha-Eldin & Dhaene, Jan, 2016. "Optimal allocation of policy deductibles for exchangeable risks," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 87-92.
    12. Cai, Jun & Wei, Wei, 2014. "Some new notions of dependence with applications in optimal allocation problems," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 200-209.
    13. Li, Chen & Li, Xiaohu, 2017. "Ordering optimal deductible allocations for stochastic arrangement increasing risks," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 31-40.
    14. Xu, Maochao & Mao, Tiantian, 2013. "Optimal capital allocation based on the Tail Mean–Variance model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 533-543.
    15. Wei Wei, 2018. "Properties of Stochastic Arrangement Increasing and Their Applications in Allocation Problems," Risks, MDPI, vol. 6(2), pages 1-12, April.
    16. Wei, Wei, 2017. "Joint stochastic orders of high degrees and their applications in portfolio selections," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 141-148.
    17. Halim Zeghdoudi & Meriem Bouhadjar & Mohamed Riad Remita, 2014. "On Stochastic Orders and its applications : Policy limits and Deductibles," Papers 1411.1609, arXiv.org, revised Jan 2015.
    18. Yinping You & Xiaohu Li, 2017. "Most unfavorable deductibles and coverage limits for multiple random risks with Archimedean copulas," Annals of Operations Research, Springer, vol. 259(1), pages 485-501, December.
    19. Li, Chen & Li, Xiaohu, 2017. "Preservation of weak stochastic arrangement increasing under fixed time left-censoring," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 42-49.
    20. Maria Mercè Claramunt & Maite Màrmol, 2020. "Refundable deductible insurance," Working Papers hal-02909299, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:92:y:2020:i:c:p:61-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.