IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v179y2020ics0047259x20302281.html
   My bibliography  Save this article

Linear orderings of the scale mixtures of the multivariate skew-normal distribution

Author

Listed:
  • Amiri, Mehdi
  • Izadkhah, Salman
  • Jamalizadeh, Ahad

Abstract

In this paper, (positive) linear stochastic orderings of random vectors X and Y having scale mixtures of the multivariate skew-normal distribution are studied. Necessary and sufficient convenient conditions for a⊤X to be less than a⊤Y, when a is a vector of positive values, in the sense of usual, convex and increasing convex stochastic orders are grasped. The results are potentially applied to conduct some stochastic comparisons of weekly returns of developed markets and emerging markets. We demonstrate that the family of distributions is ordered in the stop-loss and the second degree stochastic dominance orders in terms of the correlation coefficients of the underlying random vectors. A possible application of one of the results in the reliability analysis of series and parallel systems is supplied.

Suggested Citation

  • Amiri, Mehdi & Izadkhah, Salman & Jamalizadeh, Ahad, 2020. "Linear orderings of the scale mixtures of the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
  • Handle: RePEc:eee:jmvana:v:179:y:2020:i:c:s0047259x20302281
    DOI: 10.1016/j.jmva.2020.104647
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X20302281
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2020.104647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:oup:rfinst:v:25:y::i:12:p:3711-3751 is not listed on IDEAS
    2. Peter Christoffersen & Vihang Errunza & Kris Jacobs & Hugues Langlois, 2012. "Is the Potential for International Diversification Disappearing? A Dynamic Copula Approach," The Review of Financial Studies, Society for Financial Studies, vol. 25(12), pages 3711-3751.
    3. Miguel Sordo & Héctor Ramos, 2007. "Characterization of stochastic orders by L-functionals," Statistical Papers, Springer, vol. 48(2), pages 249-263, April.
    4. Christofides, Tasos C. & Vaggelatou, Eutichia, 2004. "A connection between supermodular ordering and positive/negative association," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 138-151, January.
    5. Marco Scarsini & Alessandro Arlotto, 2009. "Hessian orders and multinormal distributions - à paraître," Post-Print hal-00542400, HAL.
    6. Bekele, B. Nebiyou & Thall, Peter F., 2004. "Dose-Finding Based on Multiple Toxicities in a Soft Tissue Sarcoma Trial," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 26-35, January.
    7. Muliere, Pietro & Scarsini, Marco, 1989. "Multivariate decisions with unknown price vector," Economics Letters, Elsevier, vol. 29(1), pages 13-19.
    8. Joe, Harry, 1990. "Multivariate concordance," Journal of Multivariate Analysis, Elsevier, vol. 35(1), pages 12-30, October.
    9. Landsman, Zinoviy & Tsanakas, Andreas, 2006. "Stochastic ordering of bivariate elliptical distributions," Statistics & Probability Letters, Elsevier, vol. 76(5), pages 488-494, March.
    10. Alfred Müller & Marco Scarsini, 2001. "Stochastic Comparison of Random Vectors with a Common Copula," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 723-740, November.
    11. Arlotto, Alessandro & Scarsini, Marco, 2009. "Hessian orders and multinormal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2324-2330, November.
    12. Marco Scarsini, 1998. "Multivariate convex orderings, dependence, and stochastic equality," Post-Print hal-00541775, HAL.
    13. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    14. Müller, Alfred & Scarsini, Marco, 2000. "Some Remarks on the Supermodular Order," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 107-119, April.
    15. Pan, Xiaoqing & Qiu, Guoxin & Hu, Taizhong, 2016. "Stochastic orderings for elliptical random vectors," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 83-88.
    16. Behboodian, J. & Jamalizadeh, A. & Balakrishnan, N., 2006. "A new class of skew-Cauchy distributions," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1488-1493, August.
    17. Dhaene, Jan & Goovaerts, Marc J., 1996. "Dependency of Risks and Stop-Loss Order1," ASTIN Bulletin, Cambridge University Press, vol. 26(2), pages 201-212, November.
    18. Muller, Alfred, 1997. "Stop-loss order for portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 21(3), pages 219-223, December.
    19. Lucas, Larry A. & Wright, F. T., 1991. "Testing for and against a stochastic ordering between multivariate multinomial populations," Journal of Multivariate Analysis, Elsevier, vol. 38(2), pages 167-186, August.
    20. Alfred Müller, 2001. "Stochastic Ordering of Multivariate Normal Distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 53(3), pages 567-575, September.
    21. Kim, Hyoung-Moon & Genton, Marc G., 2011. "Characteristic functions of scale mixtures of multivariate skew-normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 102(7), pages 1105-1117, August.
    22. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    23. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    24. Dhaene, J. & Goovaerts, M. J., 1997. "On the dependency of risks in the individual life model," Insurance: Mathematics and Economics, Elsevier, vol. 19(3), pages 243-253, May.
    25. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    2. Mehdi Amiri & Narayanaswamy Balakrishnan & Abbas Eftekharian, 2022. "Hessian orderings of multivariate normal variance-mean mixture distributions and their applications in evaluating dependent multivariate risk portfolios," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 679-707, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chuancun Yin & Jing Yao & Yang Yang, 2024. "Hessian and increasing-Hessian orderings of multivariate skew-elliptical random vectors with applications in actuarial science," Statistical Papers, Springer, vol. 65(7), pages 4715-4744, September.
    2. Mehdi Amiri & Narayanaswamy Balakrishnan & Abbas Eftekharian, 2022. "Hessian orderings of multivariate normal variance-mean mixture distributions and their applications in evaluating dependent multivariate risk portfolios," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(3), pages 679-707, September.
    3. Chuancun Yin, 2019. "Stochastic Orderings of Multivariate Elliptical Distributions," Papers 1910.07158, arXiv.org, revised Nov 2019.
    4. Pan, Xiaoqing & Qiu, Guoxin & Hu, Taizhong, 2016. "Stochastic orderings for elliptical random vectors," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 83-88.
    5. Yin, Chuancun & Balakrishnan, Narayanaswamy, 2024. "Stochastic representations and probabilistic characteristics of multivariate skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    6. Margaret Meyer & Bruno Strulovici, 2013. "Beyond Correlation: Measuring Interdependence Through Complementarities," Economics Series Working Papers 655, University of Oxford, Department of Economics.
    7. Alfred Müller & Marco Scarsini, 2001. "Stochastic Comparison of Random Vectors with a Common Copula," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 723-740, November.
    8. Hossein Negarestani & Ahad Jamalizadeh & Sobhan Shafiei & Narayanaswamy Balakrishnan, 2019. "Mean mixtures of normal distributions: properties, inference and application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 501-528, May.
    9. Giorgi, Emanuele & McNeil, Alexander J., 2016. "On the computation of multivariate scenario sets for the skew-t and generalized hyperbolic families," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 205-220.
    10. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    11. Hu, Taizhong & Wu, Zhiqiang, 1999. "On dependence of risks and stop-loss premiums," Insurance: Mathematics and Economics, Elsevier, vol. 24(3), pages 323-332, May.
    12. Arlotto, Alessandro & Scarsini, Marco, 2009. "Hessian orders and multinormal distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2324-2330, November.
    13. Adcock, C.J., 2014. "Mean–variance–skewness efficient surfaces, Stein’s lemma and the multivariate extended skew-Student distribution," European Journal of Operational Research, Elsevier, vol. 234(2), pages 392-401.
    14. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    15. Kızıldemir, Bünyamin & Privault, Nicolas, 2015. "Supermodular ordering of Poisson arrays," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 136-143.
    16. Reinaldo B. Arellano-Valle & Marc G. Genton, 2010. "Multivariate extended skew-t distributions and related families," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 201-234.
    17. Yeo, Keng Leong & Valdez, Emiliano A., 2006. "Claim dependence with common effects in credibility models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 609-629, June.
    18. Azzalini, Adelchi & Browne, Ryan P. & Genton, Marc G. & McNicholas, Paul D., 2016. "On nomenclature for, and the relative merits of, two formulations of skew distributions," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 201-206.
    19. Cornelis J. Potgieter & Marc G. Genton, 2013. "Characteristic Function-based Semiparametric Inference for Skew-symmetric Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(3), pages 471-490, September.
    20. Michel Denuit & Esther Frostig & Benny Levikson, 2007. "Supermodular Comparison of Time-to-Ruin Random Vectors," Methodology and Computing in Applied Probability, Springer, vol. 9(1), pages 41-54, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:179:y:2020:i:c:s0047259x20302281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.