IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v93y2005i1p112-121.html
   My bibliography  Save this article

Stochastic comparisons of order statistics from gamma distributions

Author

Listed:
  • Lihong, Sun
  • Xinsheng, Zhang

Abstract

Let (X1,X2,...,Xn) and (Y1,Y2,...,Yn) be gamma random vectors with common shape parameter [alpha] (0 1, we can only compare the the first- and last-order statistics. Some earlier results on stochastically comparing proportional hazard functions are shown to be special cases of our results.

Suggested Citation

  • Lihong, Sun & Xinsheng, Zhang, 2005. "Stochastic comparisons of order statistics from gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 112-121, March.
  • Handle: RePEc:eee:jmvana:v:93:y:2005:i:1:p:112-121
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(04)00018-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Proschan, F. & Sethuraman, J., 1976. "Stochastic comparisons of order statistics from heterogeneous populations, with applications in reliability," Journal of Multivariate Analysis, Elsevier, vol. 6(4), pages 608-616, December.
    2. Kochar, Subhash & Ma, Chunsheng, 1999. "Dispersive ordering of convolutions of exponential random variables," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 321-324, July.
    3. Korwar, Ramesh M., 2002. "On Stochastic Orders for Sums of Independent Random Variables," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 344-357, February.
    4. Boland, Philip J. & El-Neweihi, Emad & Proschan, Frank, 1994. "Schur properties of convolutions of exponential and geometric random variables," Journal of Multivariate Analysis, Elsevier, vol. 48(1), pages 157-167, January.
    5. Chang, Kuo-Hwa, 2001. "Stochastic orders of the sums of two exponential random variables," Statistics & Probability Letters, Elsevier, vol. 51(4), pages 389-396, February.
    6. Kochar, Subhash C & Korwar, Ramesh, 1996. "Stochastic Orders for Spacings of Heterogeneous Exponential Random Variables," Journal of Multivariate Analysis, Elsevier, vol. 57(1), pages 69-83, April.
    7. Kochar, Subhash & Rojo, Javier, 1996. "Some New Results on Stochastic Comparisons of Spacings from Heterogeneous Exponential Distributions," Journal of Multivariate Analysis, Elsevier, vol. 59(2), pages 272-281, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Peng & Balakrishnan, N., 2011. "New results on comparisons of parallel systems with heterogeneous gamma components," Statistics & Probability Letters, Elsevier, vol. 81(1), pages 36-44, January.
    2. Torrado, Nuria & Lillo, Rosa E., 2013. "Likelihood ratio order of spacings from two heterogeneous samples," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 338-348.
    3. Misra, Neeraj & Misra, Amit Kumar, 2013. "On comparison of reversed hazard rates of two parallel systems comprising of independent gamma components," Statistics & Probability Letters, Elsevier, vol. 83(6), pages 1567-1570.
    4. Fischer, T. & Balakrishnan, N. & Cramer, E., 2008. "Mixture representation for order statistics from INID progressive censoring and its applications," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1999-2015, October.
    5. Farbod Roosta-Khorasani & Gábor Székely, 2015. "Schur properties of convolutions of gamma random variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(8), pages 997-1014, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jongwoo Jeon & Subhash Kochar & Chul Park, 2006. "Dispersive ordering—Some applications and examples," Statistical Papers, Springer, vol. 47(2), pages 227-247, March.
    2. Zhao, Peng & Li, Xiaohu & Balakrishnan, N., 2009. "Likelihood ratio order of the second order statistic from independent heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 952-962, May.
    3. Fathi Manesh, Sirous & Khaledi, Baha-Eldin, 2008. "On the likelihood ratio order for convolutions of independent generalized Rayleigh random variables," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3139-3144, December.
    4. Peng Zhao & N. Balakrishnan, 2011. "Dispersive ordering of fail-safe systems with heterogeneous exponential components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(2), pages 203-210, September.
    5. Fischer, T. & Balakrishnan, N. & Cramer, E., 2008. "Mixture representation for order statistics from INID progressive censoring and its applications," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1999-2015, October.
    6. Zhao, Peng & Balakrishnan, N., 2009. "Likelihood ratio ordering of convolutions of heterogeneous exponential and geometric random variables," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1717-1723, August.
    7. Zhao, Peng, 2011. "Some new results on convolutions of heterogeneous gamma random variables," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 958-976, May.
    8. Balakrishnan, N. & Zhao, Peng, 2013. "Hazard rate comparison of parallel systems with heterogeneous gamma components," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 153-160.
    9. Zhao, Peng & Balakrishnan, N., 2009. "Mean residual life order of convolutions of heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1792-1801, September.
    10. Zhao, Peng & Balakrishnan, N., 2010. "Ordering properties of convolutions of heterogeneous Erlang and Pascal random variables," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 969-974, June.
    11. Zhao, Peng & Hu, Taizhong, 2010. "On hazard rate ordering of the sums of heterogeneous geometric random variables," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 44-51, January.
    12. Peng Zhao & N. Balakrishnan, 2015. "Comparisons of Largest Order Statistics from Multiple-outlier Gamma Models," Methodology and Computing in Applied Probability, Springer, vol. 17(3), pages 617-645, September.
    13. Ding, Weiyong & Da, Gaofeng & Zhao, Peng, 2013. "On sample ranges from two sets of heterogenous random variables," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 63-73.
    14. Kochar, Subhash & Ma, Chunsheng, 1999. "Dispersive ordering of convolutions of exponential random variables," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 321-324, July.
    15. Chu, Yu-Ming & Xia, Wei-Feng & Zhang, Xiao-Hui, 2012. "The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 412-421.
    16. Li, Chen & Li, Xiaohu, 2015. "Likelihood ratio order of sample minimum from heterogeneous Weibull random variables," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 46-53.
    17. Belzunce, Félix & Ruiz, José M. & Suárez-Llorens, Alfonso, 2008. "On multivariate dispersion orderings based on the standard construction," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 271-281, February.
    18. Paltanea, Eugen, 2011. "Bounds for mixtures of order statistics from exponentials and applications," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 896-907, May.
    19. Genest, Christian & Kochar, Subhash C. & Xu, Maochao, 2009. "On the range of heterogeneous samples," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1587-1592, September.
    20. Ding, Weiyong & Zhang, Yiying & Zhao, Peng, 2013. "Comparisons of k-out-of-n systems with heterogenous components," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 493-502.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:93:y:2005:i:1:p:112-121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.