IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v78y2015i8p997-1014.html
   My bibliography  Save this article

Schur properties of convolutions of gamma random variables

Author

Listed:
  • Farbod Roosta-Khorasani
  • Gábor Székely

Abstract

Sufficient conditions for comparing the convolutions of heterogeneous gamma random variables in terms of the usual stochastic order are established. Such comparisons are characterized by the Schur convexity properties of the cumulative distribution function of the convolutions. Some examples of the practical applications of our results are given. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Farbod Roosta-Khorasani & Gábor Székely, 2015. "Schur properties of convolutions of gamma random variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(8), pages 997-1014, November.
  • Handle: RePEc:spr:metrik:v:78:y:2015:i:8:p:997-1014
    DOI: 10.1007/s00184-015-0537-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-015-0537-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-015-0537-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boland, Philip J. & El-Neweihi, Emad & Proschan, Frank, 1994. "Schur properties of convolutions of exponential and geometric random variables," Journal of Multivariate Analysis, Elsevier, vol. 48(1), pages 157-167, January.
    2. Furman, Edward & Landsman, Zinoviy, 2006. "Tail Variance Premium with Applications for Elliptical Portfolio of Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 433-462, November.
    3. Lihong, Sun & Xinsheng, Zhang, 2005. "Stochastic comparisons of order statistics from gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 112-121, March.
    4. Zhao, Peng & Balakrishnan, N., 2009. "Mean residual life order of convolutions of heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1792-1801, September.
    5. Kochar, Subhash & Xu, Maochao, 2010. "On the right spread order of convolutions of heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 165-176, January.
    6. Zhao, Peng, 2011. "Some new results on convolutions of heterogeneous gamma random variables," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 958-976, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansour Shrahili & Mohamed Kayid, 2022. "Characterizations of the Exponential Distribution by Some Random Hazard Rate Sequences," Mathematics, MDPI, vol. 10(17), pages 1-11, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Peng, 2011. "Some new results on convolutions of heterogeneous gamma random variables," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 958-976, May.
    2. Zhao, Peng & Zhang, Yiying, 2012. "On sample ranges in multiple-outlier models," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 335-349.
    3. You, Yinping & Li, Xiaohu, 2015. "Functional characterizations of bivariate weak SAI with an application," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 225-231.
    4. Zhao, Peng & Balakrishnan, N., 2010. "Ordering properties of convolutions of heterogeneous Erlang and Pascal random variables," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 969-974, June.
    5. Zhao, Peng & Hu, Taizhong, 2010. "On hazard rate ordering of the sums of heterogeneous geometric random variables," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 44-51, January.
    6. Balakrishnan, Narayanaswamy & Belzunce, Félix & Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2012. "Increasing directionally convex orderings of random vectors having the same copula, and their use in comparing ordered data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 45-54.
    7. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    8. Kochar, Subhash & Ma, Chunsheng, 1999. "Dispersive ordering of convolutions of exponential random variables," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 321-324, July.
    9. Haitham M. Yousof & Yusra Tashkandy & Walid Emam & M. Masoom Ali & Mohamed Ibrahim, 2023. "A New Reciprocal Weibull Extension for Modeling Extreme Values with Risk Analysis under Insurance Data," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
    10. Zhao, Peng & Li, Xiaohu & Balakrishnan, N., 2009. "Likelihood ratio order of the second order statistic from independent heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 952-962, May.
    11. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    12. Mohamed Kayid & Mashael A. Alshehri, 2023. "Stochastic Comparisons of Lifetimes of Used Standby Systems," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
    13. Landsman, Zinoviy & Makov, Udi & Shushi, Tomer, 2016. "Tail conditional moments for elliptical and log-elliptical distributions," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 179-188.
    14. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Papers 2103.10989, arXiv.org.
    15. Jilber Urbina & Miguel Santolino & Montserrat Guillen, 2021. "Covariance Principle for Capital Allocation: A Time-Varying Approach," Mathematics, MDPI, vol. 9(16), pages 1-13, August.
    16. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Working Papers hal-03169291, HAL.
    17. Psarrakos, Georgios & Vliora, Polyxeni, 2021. "Sensitivity analysis and tail variability for the Wang’s actuarial index," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 147-152.
    18. Cheung, Eric C.K. & Peralta, Oscar & Woo, Jae-Kyung, 2022. "Multivariate matrix-exponential affine mixtures and their applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 364-389.
    19. Shushi, Tomer, 2019. "The Minkowski length of a spherical random vector," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 104-107.
    20. Sordo, Miguel A., 2009. "Comparing tail variabilities of risks by means of the excess wealth order," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 466-469, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:78:y:2015:i:8:p:997-1014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.