A Parameter-Driven Logit Regression Model For Binary Time Series
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
- Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
- Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
- Cai, Zongwu, 2003. "Nonparametric estimation equations for time series data," Statistics & Probability Letters, Elsevier, vol. 62(4), pages 379-390, May.
- Klingenberg, Bernhard, 2008. "Regression models for binary time series with gaps," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 4076-4090, April.
- Konstantinos Fokianos & Benjamin Kedem, 2004. "Partial Likelihood Inference For Time Series Following Generalized Linear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 173-197, March.
- Graciela Boente & Daniela Rodriguez, 2012. "Robust estimates in generalized partially linear single-index models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 386-411, June.
- Richard A. Davis & Rongning Wu, 2009. "A negative binomial model for time series of counts," Biometrika, Biometrika Trust, vol. 96(3), pages 735-749.
- Davidson, James, 1992. "A Central Limit Theorem for Globally Nonstationary Near-Epoch Dependent Functions of Mixing Processes," Econometric Theory, Cambridge University Press, vol. 8(3), pages 313-329, September.
- Wu, Rongning, 2012. "On variance estimation in a negative binomial time series regression model," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 145-155.
- Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(2), pages 186-199, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- William Dunsmuir & Jieyi He, 2017. "Marginal Estimation of Parameter Driven Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 120-144, January.
- Fokianos, Konstantinos & Moysiadis, Theodoros, 2017. "Binary time series models driven by a latent process," Econometrics and Statistics, Elsevier, vol. 2(C), pages 117-130.
- Fokianos, Konstantinos & Truquet, Lionel, 2019. "On categorical time series models with covariates," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3446-3462.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang Lu, 2020. "A simple parameter‐driven binary time series model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 187-199, March.
- Harri Pönkä, 2017.
"Predicting the direction of US stock markets using industry returns,"
Empirical Economics, Springer, vol. 52(4), pages 1451-1480, June.
- Pönkä, Harri, 2014. "Predicting the direction of US stock markets using industry returns," MPRA Paper 62942, University Library of Munich, Germany.
- William Dunsmuir & Jieyi He, 2017. "Marginal Estimation of Parameter Driven Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(1), pages 120-144, January.
- Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
- Hashmat Khan & Santosh Upadhayaya, 2020.
"Does business confidence matter for investment?,"
Empirical Economics, Springer, vol. 59(4), pages 1633-1665, October.
- Hashmat Khan & Santosh Upadhayaya, 2017. "Does Business Confidence Matter for Investment?," Carleton Economic Papers 17-13, Carleton University, Department of Economics, revised 20 Mar 2019.
- Fokianos, Konstantinos & Moysiadis, Theodoros, 2017. "Binary time series models driven by a latent process," Econometrics and Statistics, Elsevier, vol. 2(C), pages 117-130.
- Fokianos, Konstantinos & Truquet, Lionel, 2019. "On categorical time series models with covariates," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3446-3462.
- Nyberg, Henri, 2013. "Predicting bear and bull stock markets with dynamic binary time series models," Journal of Banking & Finance, Elsevier, vol. 37(9), pages 3351-3363.
- Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
- Gupta, Rangan & Wohar, Mark, 2017.
"Forecasting oil and stock returns with a Qual VAR using over 150years off data,"
Energy Economics, Elsevier, vol. 62(C), pages 181-186.
- Rangan Gupta & Mark E. Wohar, 2015. "Forecasting Oil and Stock Returns with a Qual VAR using over 150 Years of Data," Working Papers 201589, University of Pretoria, Department of Economics.
- Basak, Suryoday & Kar, Saibal & Saha, Snehanshu & Khaidem, Luckyson & Dey, Sudeepa Roy, 2019. "Predicting the direction of stock market prices using tree-based classifiers," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 552-567.
- Pawel Dlotko & Wanling Qiu & Simon Rudkin, 2022. "Topological Data Analysis Ball Mapper for Finance," Papers 2206.03622, arXiv.org.
- Luis H. R. Alvarez E. & Paavo Salminen, 2017.
"Timing in the presence of directional predictability: optimal stopping of skew Brownian motion,"
Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(2), pages 377-400, October.
- Luis H. R. Alvarez E. & Paavo Salminen, 2016. "Timing in the Presence of Directional Predictability: Optimal Stopping of Skew Brownian Motion," Papers 1608.04537, arXiv.org.
- de Resende, Charlene C. & Pereira, Adriano C.M. & Cardoso, Rodrigo T.N. & de Magalhães, A.R. Bosco, 2017. "Investigating market efficiency through a forecasting model based on differential equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 199-212.
- Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2017.
"Further evidence on bear market predictability: The role of the external finance premium,"
International Review of Economics & Finance, Elsevier, vol. 50(C), pages 106-121.
- Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2013. "Further evidence on bear market predictability: The role of the external finance premium," MPRA Paper 49093, University Library of Munich, Germany.
- Becker, Janis & Leschinski, Christian, 2018. "Directional Predictability of Daily Stock Returns," Hannover Economic Papers (HEP) dp-624, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Ginker, Tim & Lieberman, Offer, 2017. "Robustness of binary choice models to conditional heteroscedasticity," Economics Letters, Elsevier, vol. 150(C), pages 130-134.
- Shang, Zuofeng, 2012. "On latent process models in multi-dimensional space," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1259-1266.
- Straetmans, S.T.M. & Candelon, B. & Ahmed, J., 2012.
"Predicting and capitalizing on stock market bears in the U.S,"
Research Memorandum
019, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Bertrand Candelon & Jameel Ahmed & Stefan Straetmans, 2014. "Predicting and Capitalizing on Stock Market Bears in the U.S," Working Papers 2014-409, Department of Research, Ipag Business School.
- Algieri, Bernardina & Leccadito, Arturo, 2019. "Ask CARL: Forecasting tail probabilities for energy commodities," Energy Economics, Elsevier, vol. 84(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:35:y:2014:i:5:p:462-477. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.