IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v21y2019i2d10.1007_s11009-017-9614-z.html
   My bibliography  Save this article

Tail Approximations for Sums of Dependent Regularly Varying Random Variables Under Archimedean Copula Models

Author

Listed:
  • Hélène Cossette

    (Université Laval)

  • Etienne Marceau

    (Université Laval)

  • Quang Huy Nguyen

    (Université de Lyon, Université Lyon 1)

  • Christian Y. Robert

    (Université de Lyon, Université Lyon 1)

Abstract

In this paper, we compare two numerical methods for approximating the probability that the sum of dependent regularly varying random variables exceeds a high threshold under Archimedean copula models. The first method is based on conditional Monte Carlo. We present four estimators and show that most of them have bounded relative errors. The second method is based on analytical expressions of the multivariate survival or cumulative distribution functions of the regularly varying random variables and provides sharp and deterministic bounds of the probability of exceedance. We discuss implementation issues and illustrate the accuracy of both procedures through numerical studies.

Suggested Citation

  • Hélène Cossette & Etienne Marceau & Quang Huy Nguyen & Christian Y. Robert, 2019. "Tail Approximations for Sums of Dependent Regularly Varying Random Variables Under Archimedean Copula Models," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 461-490, June.
  • Handle: RePEc:spr:metcap:v:21:y:2019:i:2:d:10.1007_s11009-017-9614-z
    DOI: 10.1007/s11009-017-9614-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9614-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9614-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Kai-Tai & Fang, Bi-Qi, 1988. "Some families of mutivariate symmetric distributions related to exponential distribution," Journal of Multivariate Analysis, Elsevier, vol. 24(1), pages 109-122, January.
    2. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    3. Søren Asmussen & José Blanchet & Sandeep Juneja & Leonardo Rojas-Nandayapa, 2011. "Efficient simulation of tail probabilities of sums of correlated lognormals," Annals of Operations Research, Springer, vol. 189(1), pages 5-23, September.
    4. Barbe, Philippe & Genest, Christian & Ghoudi, Kilani & Rémillard, Bruno, 1996. "On Kendall's Process," Journal of Multivariate Analysis, Elsevier, vol. 58(2), pages 197-229, August.
    5. Chan, Joshua C.C. & Kroese, Dirk P., 2010. "Efficient estimation of large portfolio loss probabilities in t-copula models," European Journal of Operational Research, Elsevier, vol. 205(2), pages 361-367, September.
    6. Joshua Chan & Dirk Kroese, 2011. "Rare-event probability estimation with conditional Monte Carlo," Annals of Operations Research, Springer, vol. 189(1), pages 43-61, September.
    7. Brechmann, Eike C. & Hendrich, Katharina & Czado, Claudia, 2013. "Conditional copula simulation for systemic risk stress testing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 722-732.
    8. Hofert, Marius, 2008. "Sampling Archimedean copulas," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5163-5174, August.
    9. Asmussen, S. & Binswanger, K., 1997. "Simulation of Ruin Probabilities for Subexponential Claims," ASTIN Bulletin, Cambridge University Press, vol. 27(2), pages 297-318, November.
    10. Cossette, Hélène & Côté, Marie-Pier & Mailhot, Mélina & Marceau, Etienne, 2014. "A note on the computation of sharp numerical bounds for the distribution of the sum, product or ratio of dependent risks," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 1-20.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaoubi, Ihsan & Cossette, Hélène & Gadoury, Simon-Pierre & Marceau, Etienne, 2020. "On sums of two counter-monotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 47-60.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hengxin Cui & Ken Seng Tan & Fan Yang, 2024. "Portfolio credit risk with Archimedean copulas: asymptotic analysis and efficient simulation," Papers 2411.06640, arXiv.org.
    2. Okhrin Ostap & Okhrin Yarema & Schmid Wolfgang, 2013. "Properties of hierarchical Archimedean copulas," Statistics & Risk Modeling, De Gruyter, vol. 30(1), pages 21-54, March.
    3. Constantinescu, Corina & Hashorva, Enkelejd & Ji, Lanpeng, 2011. "Archimedean copulas in finite and infinite dimensions—with application to ruin problems," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 487-495.
    4. Jeguirim, Khaled & Ben Salem, Leila, 2024. "Unveiling extreme dependencies between oil price shocks and inflation in Tunisia: Insights from a copula dcc garch approach," MPRA Paper 121616, University Library of Munich, Germany.
    5. Cooray Kahadawala, 2018. "Strictly Archimedean copulas with complete association for multivariate dependence based on the Clayton family," Dependence Modeling, De Gruyter, vol. 6(1), pages 1-18, February.
    6. Mohamed A. Ayadi & Hatem Ben-Ameur & Nabil Channouf & Quang Khoi Tran, 2019. "NORTA for portfolio credit risk," Annals of Operations Research, Springer, vol. 281(1), pages 99-119, October.
    7. Segers, Johan & Uyttendaele, Nathan, 2014. "Nonparametric estimation of the tree structure of a nested Archimedean copula," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 190-204.
    8. Jaworski, Piotr, 2015. "Univariate conditioning of vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 89-103.
    9. Zdravko I. Botev & Robert Salomone & Daniel Mackinlay, 2019. "Fast and accurate computation of the distribution of sums of dependent log-normals," Annals of Operations Research, Springer, vol. 280(1), pages 19-46, September.
    10. Jose Blanchet & Juan Li & Marvin K. Nakayama, 2019. "Rare-Event Simulation for Distribution Networks," Operations Research, INFORMS, vol. 67(5), pages 1383-1396, September.
    11. Elena Di Bernardino & Didier Rullière, 2017. "A note on upper-patched generators for Archimedean copulas," Post-Print hal-01347869, HAL.
    12. Zhang, Ran & Czado, Claudia & Min, Aleksey, 2011. "Efficient maximum likelihood estimation of copula based meta t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1196-1214, March.
    13. McNeil, Alexander J. & Neslehová, Johanna, 2010. "From Archimedean to Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1772-1790, September.
    14. Chang, Carolyn W. & Li, Xiaodan & Lin, Edward M.H. & Yu, Min-Teh, 2018. "Systemic risk, interconnectedness, and non-core activities in Taiwan insurance industry," International Review of Economics & Finance, Elsevier, vol. 55(C), pages 273-284.
    15. Fabian Dickmann & Nikolaus Schweizer, 2014. "Faster Comparison of Stopping Times by Nested Conditional Monte Carlo," Papers 1402.0243, arXiv.org.
    16. Xia Li, 2024. "Unveiling Portfolio Resilience: Harnessing Asymmetric Copulas for Dynamic Risk Assessment in the Knowledge Economy," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 10200-10226, September.
    17. Albrecher Hansjörg & Kantor Josef, 2002. "Simulation of ruin probabilities for risk processes of Markovian type," Monte Carlo Methods and Applications, De Gruyter, vol. 8(2), pages 111-128, December.
    18. Saminger-Platz Susanne & Kolesárová Anna & Šeliga Adam & Mesiar Radko & Klement Erich Peter, 2024. "On comprehensive families of copulas involving the three basic copulas and transformations thereof," Dependence Modeling, De Gruyter, vol. 12(1), pages 1-36.
    19. İsmail Başoğlu & Wolfgang Hörmann & Halis Sak, 2018. "Efficient simulations for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 260(1), pages 113-128, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:21:y:2019:i:2:d:10.1007_s11009-017-9614-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.