IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v65y1998i1p1-18.html
   My bibliography  Save this article

Semiparametric Estimation in the Multivariate Liouville Model

Author

Listed:
  • Bhattacharya, P. K.
  • Burman, Prabir

Abstract

We consider the problem of estimating the shape parameters in the multi- variate Liouville model in the presence of an unknown infinite-dimensional parameter. We propose an ad hoc estimate and show that it is asymptotically efficient.

Suggested Citation

  • Bhattacharya, P. K. & Burman, Prabir, 1998. "Semiparametric Estimation in the Multivariate Liouville Model," Journal of Multivariate Analysis, Elsevier, vol. 65(1), pages 1-18, April.
  • Handle: RePEc:eee:jmvana:v:65:y:1998:i:1:p:1-18
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(97)91671-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Rameshwar D. & Richards, Donald St.P., 1987. "Multivariate Liouville distributions," Journal of Multivariate Analysis, Elsevier, vol. 23(2), pages 233-256, December.
    2. Gupta, Rameshwar D. & Richards, Donald St. P., 1992. "Multivariate Liouville distributions, III," Journal of Multivariate Analysis, Elsevier, vol. 43(1), pages 29-57, October.
    3. Gupta, R. D. & Richards, D. S. P., 1995. "Multivariate Liouville Distributions, IV," Journal of Multivariate Analysis, Elsevier, vol. 54(1), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ongaro, A. & Migliorati, S., 2013. "A generalization of the Dirichlet distribution," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 412-426.
    2. Edward Hoyle & Levent Ali Menguturk, 2020. "Generalised Liouville Processes and their Properties," Papers 2003.11312, arXiv.org, revised May 2020.
    3. Gupta, Rameshwar D. & Richards, Donald St. P., 2002. "Moment Properties of the Multivariate Dirichlet Distributions," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 240-262, July.
    4. McNeil, Alexander J. & Neslehová, Johanna, 2010. "From Archimedean to Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1772-1790, September.
    5. Tian, Guo-Liang & Tang, Man-Lai & Yuen, Kam Chuen & Ng, Kai Wang, 2010. "Further properties and new applications of the nested Dirichlet distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 394-405, February.
    6. Elena Hadjicosta & Donald Richards, 2020. "Integral transform methods in goodness-of-fit testing, II: the Wishart distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(6), pages 1317-1370, December.
    7. Ng, Kai Wang & Tang, Man-Lai & Tan, Ming & Tian, Guo-Liang, 2008. "Grouped Dirichlet distribution: A new tool for incomplete categorical data analysis," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 490-509, March.
    8. Jones, M.C. & Marchand, Éric, 2019. "Multivariate discrete distributions via sums and shares," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 83-93.
    9. Denuit, Michel & Robert, Christian Y., 2020. "Conditional tail expectation decomposition and conditional mean risk sharing for dependent and conditionally independent risks," LIDAM Discussion Papers ISBA 2020018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    10. Bhattacharya, Bhaskar, 2006. "Maximum entropy characterizations of the multivariate Liouville distributions," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1272-1283, July.
    11. Fang, B. Q., 2003. "The skew elliptical distributions and their quadratic forms," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 298-314, November.
    12. Belzile, Léo R. & Nešlehová, Johanna G., 2017. "Extremal attractors of Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 160(C), pages 68-92.
    13. Tian, Guo-Liang & Fang, Hong-Bin & Tan, Ming & Qin, Hong & Tang, Man-Lai, 2009. "Uniform distributions in a class of convex polyhedrons with applications to drug combination studies," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1854-1865, September.
    14. Letac, Gérard & Massam, Hélène & Richards, Donald, 2001. "An Expectation Formula for the Multivariate Dirichlet Distribution," Journal of Multivariate Analysis, Elsevier, vol. 77(1), pages 117-137, April.
    15. Nawaf Mohammed & Edward Furman & Jianxi Su, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of Conditional Tail Expectation," Papers 2102.05003, arXiv.org, revised Aug 2021.
    16. Michel Denuit & Christian Y. Robert, 2022. "Conditional Tail Expectation Decomposition and Conditional Mean Risk Sharing for Dependent and Conditionally Independent Losses," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1953-1985, September.
    17. Hoyle, Edward & Hughston, Lane P. & Macrina, Andrea, 2011. "Lévy random bridges and the modelling of financial information," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 856-884, April.
    18. Volkmar Henschel, 2002. "Statistical inference in simplicially contoured sample distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 56(3), pages 215-228, December.
    19. Malini Iyengar & Dipak Dey, 2002. "A semiparametric model for compositional data analysis in presence of covariates on the simplex," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(2), pages 303-315, December.
    20. Mohammed, Nawaf & Furman, Edward & Su, Jianxi, 2021. "Can a regulatory risk measure induce profit-maximizing risk capital allocations? The case of conditional tail expectation," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 425-436.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:65:y:1998:i:1:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.