IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v43y1992i1p29-57.html
   My bibliography  Save this article

Multivariate Liouville distributions, III

Author

Listed:
  • Gupta, Rameshwar D.
  • Richards, Donald St. P.

Abstract

We present a panoply of results on partial orderings for the Liouville distributions, including sufficient conditions for two Liouville vectors to be comparable under the stochastic, convex, concave, and Laplace transform orderings. Further, we derive partial orderings for the order statistics and spacings from certain exchangeable Liouville distributions. As applications to reliability theory, we obtain stochastic orderings for N(t) and bounds for Rk(t), the number of components working at time t >= 0 and the reliability function, respectively, for a "k-out-of-n" system consisting of components whose lifetimes have a joint Liouville distribution. When the component lifetimes are distributed as a mixture of independent, identically distributed exponential random variables, we derive some results for a conjecture of [10], 202-208) on variation comparisons for Rk(t) as the mixing distribution is varied. Following a suggestion and using the methods of [3], we compare the cumulative distribution functions of two linear combinations of an exchangeable Liouville vector when the first vector of coefficients majorizes the second vector of coefficients. We derive sufficient conditions under which the two distribution functions cross exactly once, and obtain bounds for the location of the unique crossing point.

Suggested Citation

  • Gupta, Rameshwar D. & Richards, Donald St. P., 1992. "Multivariate Liouville distributions, III," Journal of Multivariate Analysis, Elsevier, vol. 43(1), pages 29-57, October.
  • Handle: RePEc:eee:jmvana:v:43:y:1992:i:1:p:29-57
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(92)90109-S
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward Hoyle & Levent Ali Menguturk, 2020. "Generalised Liouville Processes and their Properties," Papers 2003.11312, arXiv.org, revised May 2020.
    2. Bhattacharya, P. K. & Burman, Prabir, 1998. "Semiparametric Estimation in the Multivariate Liouville Model," Journal of Multivariate Analysis, Elsevier, vol. 65(1), pages 1-18, April.
    3. McNeil, Alexander J. & Neslehová, Johanna, 2010. "From Archimedean to Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1772-1790, September.
    4. Ongaro, A. & Migliorati, S., 2013. "A generalization of the Dirichlet distribution," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 412-426.
    5. Tian, Guo-Liang & Tang, Man-Lai & Yuen, Kam Chuen & Ng, Kai Wang, 2010. "Further properties and new applications of the nested Dirichlet distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 394-405, February.
    6. Ng, Kai Wang & Tang, Man-Lai & Tan, Ming & Tian, Guo-Liang, 2008. "Grouped Dirichlet distribution: A new tool for incomplete categorical data analysis," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 490-509, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:43:y:1992:i:1:p:29-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.