IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v101y2010i6p1532-1545.html
   My bibliography  Save this article

Generating random AR(p) and MA(q) Toeplitz correlation matrices

Author

Listed:
  • Ng, Chi Tim
  • Joe, Harry

Abstract

Methods are proposed for generating random (p+1)x(p+1) Toeplitz correlation matrices that are consistent with a causal AR(p) Gaussian time series model. The main idea is to first specify distributions for the partial autocorrelations that are algebraically independent and take values in (-1,1), and then map to the Toeplitz matrix. Similarly, starting with pseudo-partial autocorrelations, methods are proposed for generating (q+1)x(q+1) Toeplitz correlation matrices that are consistent with an invertible MA(q) Gaussian time series model. The density can be uniform or non-uniform over the space of autocorrelations up to lag p or q, or over the space of autoregressive or moving average coefficients, by making appropriate choices for the densities of the (pseudo)-partial autocorrelations. Important intermediate steps are the derivations of the Jacobians of the mappings between the (pseudo)-partial autocorrelations, autocorrelations and autoregressive/moving average coefficients. The random generating methods are useful for models with a structured Toeplitz matrix as a parameter.

Suggested Citation

  • Ng, Chi Tim & Joe, Harry, 2010. "Generating random AR(p) and MA(q) Toeplitz correlation matrices," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1532-1545, July.
  • Handle: RePEc:eee:jmvana:v:101:y:2010:i:6:p:1532-1545
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(10)00028-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joe, Harry, 2006. "Generating random correlation matrices based on partial correlations," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2177-2189, November.
    2. Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
    3. Bahar Biller & Barry L. Nelson, 2005. "Fitting Time-Series Input Processes for Simulation," Operations Research, INFORMS, vol. 53(3), pages 549-559, June.
    4. M. C. Jones, 1987. "Randomly Choosing Parameters from the Stationarity and Invertibility Region of Autoregressive–Moving Average Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(2), pages 134-138, June.
    5. Barndorff-Nielsen, O. & Schou, G., 1973. "On the parametrization of autoregressive models by partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 3(4), pages 408-419, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ilya Archakov & Peter Reinhard Hansen & Yiyao Luo, 2024. "A new method for generating random correlation matrices," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages 188-212.
    2. Fitzgibbon, L.J., 2006. "On sampling stationary autoregressive model parameters uniformly in r2 value," Statistics & Probability Letters, Elsevier, vol. 76(4), pages 349-352, February.
    3. Hui Yao & Sungduk Kim & Ming-Hui Chen & Joseph G. Ibrahim & Arvind K. Shah & Jianxin Lin, 2015. "Bayesian Inference for Multivariate Meta-Regression With a Partially Observed Within-Study Sample Covariance Matrix," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 528-544, June.
    4. Neuhoff, Daniel, 2015. "Dynamics of real per capita GDP," SFB 649 Discussion Papers 2015-039, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Alexander Meyer-Gohde & Daniel Neuhoff, 2015. "Generalized Exogenous Processes in DSGE: A Bayesian Approach," SFB 649 Discussion Papers SFB649DP2015-014, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    6. Davide Delle Monache & Ivan Petrella & Fabrizio Venditti, 2021. "Price Dividend Ratio and Long-Run Stock Returns: A Score-Driven State Space Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 1054-1065, October.
    7. Tommaso Proietti & Alessandro Giovannelli, 2018. "A Durbin–Levinson regularized estimator of high-dimensional autocovariance matrices," Biometrika, Biometrika Trust, vol. 105(4), pages 783-795.
    8. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
    9. Martin Bladt & Alexander J. McNeil, 2021. "Time series models with infinite-order partial copula dependence," Papers 2107.00960, arXiv.org.
    10. Daniels, M.J. & Pourahmadi, M., 2009. "Modeling covariance matrices via partial autocorrelations," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2352-2363, November.
    11. Luigi Spezia & Andy Vinten & Roberta Paroli & Marc Stutter, 2021. "An evolutionary Monte Carlo method for the analysis of turbidity high‐frequency time series through Markov switching autoregressive models," Environmetrics, John Wiley & Sons, Ltd., vol. 32(8), December.
    12. repec:hum:wpaper:sfb649dp2015-039 is not listed on IDEAS
    13. Pötscher, Benedikt M. & Preinerstorfer, David, 2018. "Controlling the size of autocorrelation robust tests," Journal of Econometrics, Elsevier, vol. 207(2), pages 406-431.
    14. Wang, Y. & Daniels, M.J., 2013. "Bayesian modeling of the dependence in longitudinal data via partial autocorrelations and marginal variances," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 130-140.
    15. Michael S. Smith & Shaun P. Vahey, 2016. "Asymmetric Forecast Densities for U.S. Macroeconomic Variables from a Gaussian Copula Model of Cross-Sectional and Serial Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 416-434, July.
    16. Bladt Martin & McNeil Alexander J., 2022. "Time series with infinite-order partial copula dependence," Dependence Modeling, De Gruyter, vol. 10(1), pages 87-107, January.
    17. Paroli, Roberta & Spezia, Luigi, 2008. "Bayesian inference in non-homogeneous Markov mixtures of periodic autoregressions with state-dependent exogenous variables," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2311-2330, January.
    18. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    19. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    20. Brian Hartley, 2020. "Corridor stability of the Kaleckian growth model: a Markov-switching approach," Working Papers 2013, New School for Social Research, Department of Economics, revised Nov 2020.
    21. Steffen Liebscher & Thomas Kirschstein, 2015. "Efficiency of the pMST and RDELA location and scatter estimators," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(1), pages 63-82, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:101:y:2010:i:6:p:1532-1545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.