IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v53y1995i1p18-38.html
   My bibliography  Save this article

Testing Lattice Conditional Independence Models

Author

Listed:
  • Andersson, S. A.
  • Perlman, M. D.

Abstract

The lattice conditional independence (LCI) model N() is defined to be the set of all normal distributions N(0, [Sigma]) on I such that for every pair L, M [set membership, variant] , xL and xM are conditionally independent given xL [intersection] M. Here is a ring of subsets (hence a distributive lattice) of the finite index set I such that [empty set][combining character] I [set membership, variant] , while for K [set membership, variant] , xK is the coordinate projection of x [set membership, variant] I onto K. These LCI models have especially tractable statistical properties and arise naturally in the analysis of non-monotone multivariate missing data patterns and non-nested dependent linear regression models [reverse not equivalent] seemingly unrelated regressions. The present paper treats the problem of testing one LCI model against another, i.e., testing N() vs N() when is a subring of . The likelihood ratio test statistic is derived, together with its central distribution, and several examples are presented.

Suggested Citation

  • Andersson, S. A. & Perlman, M. D., 1995. "Testing Lattice Conditional Independence Models," Journal of Multivariate Analysis, Elsevier, vol. 53(1), pages 18-38, April.
  • Handle: RePEc:eee:jmvana:v:53:y:1995:i:1:p:18-38
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(85)71022-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Wan-Ying & Richards, Donald St.P., 2009. "Finite-sample inference with monotone incomplete multivariate normal data, I," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1883-1899, October.
    2. Andersson, Steen A. & Perlman, Michael D., 1998. "Normal Linear Regression Models With Recursive Graphical Markov Structure," Journal of Multivariate Analysis, Elsevier, vol. 66(2), pages 133-187, August.
    3. Jinfang Wang, 2010. "A universal algebraic approach for conditional independence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(4), pages 747-773, August.
    4. Wu, Lang & Perlman, Michael D., 2000. "Testing lattice conditional independence models based on monotone missing data," Statistics & Probability Letters, Elsevier, vol. 50(2), pages 193-201, November.
    5. Drton, Mathias & Andersson, Steen A. & Perlman, Michael D., 2006. "Conditional independence models for seemingly unrelated regressions with incomplete data," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 385-411, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:53:y:1995:i:1:p:18-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.