IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v50y2006i10p2600-2634.html
   My bibliography  Save this article

Errors in discrimination with monotone missing data from multivariate normal populations

Author

Listed:
  • Batsidis, A.
  • Zografos, K.
  • Loukas, S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Batsidis, A. & Zografos, K. & Loukas, S., 2006. "Errors in discrimination with monotone missing data from multivariate normal populations," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2600-2634, June.
  • Handle: RePEc:eee:csdana:v:50:y:2006:i:10:p:2600-2634
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(05)00070-8
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Bhargava, 1975. "Some one-sample hypothesis testing problems when there is a monotone sample from a multivariate normal population," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 27(1), pages 327-339, December.
    2. Hao, Jian & Krishnamoorthy, K., 2001. "Inferences on a Normal Covariance Matrix and Generalized Variance with Monotone Missing Data," Journal of Multivariate Analysis, Elsevier, vol. 78(1), pages 62-82, July.
    3. K. Krishnamoorthy & Maruthy Pannala, 1998. "Some Simple Test Procedures for Normal Mean Vector with Incomplete Data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(3), pages 531-542, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richards, Donald St. P. & Yamada, Tomoya, 2010. "The Stein phenomenon for monotone incomplete multivariate normal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 657-678, March.
    2. Nobumichi Shutoh & Takahiro Nishiyama & Masashi Hyodo, 2017. "Bartlett correction to the likelihood ratio test for MCAR with two-step monotone sample," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(3), pages 184-199, August.
    3. Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Wan-Ying & Richards, Donald St.P., 2009. "Finite-sample inference with monotone incomplete multivariate normal data, I," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1883-1899, October.
    2. Richards, Donald St. P. & Yamada, Tomoya, 2010. "The Stein phenomenon for monotone incomplete multivariate normal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 657-678, March.
    3. Yin, Yanqing, 2021. "Test for high-dimensional mean vector under missing observations," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    4. Krishnamoorthy, K., 2013. "Comparison of confidence intervals for correlation coefficients based on incomplete monotone samples and those based on listwise deletion," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 378-388.
    5. Chang, Wan-Ying & Richards, Donald St. P., 2010. "Finite-sample inference with monotone incomplete multivariate normal data, II," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 603-620, March.
    6. Hironori Fujisawa, 1996. "The maximum likelihood estimators in a multivariate normal distribution with AR(1) covariance structure for monotone data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(3), pages 423-428, September.
    7. Tsukada, Shin-ichi, 2024. "Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    8. Tsukada, Shin-ichi, 2014. "Equivalence testing of mean vector and covariance matrix for multi-populations under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 183-196.
    9. Kurita, Eri & Seo, Takashi, 2022. "Multivariate normality test based on kurtosis with two-step monotone missing data," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Nobumichi Shutoh & Takahiro Nishiyama & Masashi Hyodo, 2017. "Bartlett correction to the likelihood ratio test for MCAR with two-step monotone sample," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 71(3), pages 184-199, August.
    11. Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.
    12. Wu, Mi-Xia & Yu, Kai-Fun, 2008. "Remarks on between estimator in the intraclass correlation model with missing data," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2444-2452, November.
    13. Yu, Jianqi & Krishnamoorthy, K. & Pannala, Maruthy K., 2006. "Two-sample inference for normal mean vectors based on monotone missing data," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2162-2176, November.
    14. Krishnamoorthy, K. & Yu, Jianqi, 2012. "Multivariate Behrens–Fisher problem with missing data," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 141-150.
    15. Hao, Jian & Krishnamoorthy, K., 2001. "Inferences on a Normal Covariance Matrix and Generalized Variance with Monotone Missing Data," Journal of Multivariate Analysis, Elsevier, vol. 78(1), pages 62-82, July.
    16. Tomoya Yamada & Megan Romer & Donald Richards, 2015. "Kurtosis tests for multivariate normality with monotone incomplete data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 532-557, September.
    17. Abdelhamid Hassairi & Fatma Ktari & Raoudha Zine, 2022. "On the Gaussian representation of the Riesz probability distribution on symmetric matrices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 609-632, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:50:y:2006:i:10:p:2600-2634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.