IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v80y2010i17-18p1284-1288.html
   My bibliography  Save this article

Maximum likelihood estimation of the mean of a multivariate normal population with monotone incomplete data

Author

Listed:
  • Romer, Megan M.
  • Richards, Donald St. P.

Abstract

Given a two-step, monotone incomplete, random sample from , a multivariate normal population with mean and covariance matrix , we consider the problem of deriving an exact stochastic representation for , the maximum likelihood estimator of . We prove that and , the maximum likelihood estimators of and , respectively, are equivariant under a certain group of affine transformations, and then we apply the equivariance property to obtain a new derivation of a stochastic representation for established by Chang and Richards (2009). The new derivation induces explicit representations, in terms of the data, for the independent random variables that arise in the stochastic representation for .

Suggested Citation

  • Romer, Megan M. & Richards, Donald St. P., 2010. "Maximum likelihood estimation of the mean of a multivariate normal population with monotone incomplete data," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1284-1288, September.
  • Handle: RePEc:eee:stapro:v:80:y:2010:i:17-18:p:1284-1288
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00114-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Wan-Ying & Richards, Donald St.P., 2009. "Finite-sample inference with monotone incomplete multivariate normal data, I," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 1883-1899, October.
    2. Richards, Donald St. P. & Yamada, Tomoya, 2010. "The Stein phenomenon for monotone incomplete multivariate normal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 657-678, March.
    3. Chang, Wan-Ying & Richards, Donald St. P., 2010. "Finite-sample inference with monotone incomplete multivariate normal data, II," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 603-620, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomoya Yamada & Megan Romer & Donald Richards, 2015. "Kurtosis tests for multivariate normality with monotone incomplete data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 532-557, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tomoya Yamada & Megan Romer & Donald Richards, 2015. "Kurtosis tests for multivariate normality with monotone incomplete data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 532-557, September.
    2. Tsukada, Shin-ichi, 2024. "Hypothesis testing for mean vector and covariance matrix of multi-populations under a two-step monotone incomplete sample in large sample and dimension," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    3. Tsukada, Shin-ichi, 2014. "Equivalence testing of mean vector and covariance matrix for multi-populations under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 132(C), pages 183-196.
    4. Keiji Takai & Kenichi Hayashi, 2023. "Model Selection with Missing Data Embedded in Missing-at-Random Data," Stats, MDPI, vol. 6(2), pages 1-11, April.
    5. Tsukada, Shin-ichi, 2014. "Asymptotic expansion for distribution of the trace of a covariance matrix under a two-step monotone incomplete sample," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 206-219.
    6. Richards, Donald St. P. & Yamada, Tomoya, 2010. "The Stein phenomenon for monotone incomplete multivariate normal data," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 657-678, March.
    7. Krishnamoorthy, K., 2013. "Comparison of confidence intervals for correlation coefficients based on incomplete monotone samples and those based on listwise deletion," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 378-388.
    8. Shutoh, Nobumichi & Hyodo, Masashi & Seo, Takashi, 2011. "An asymptotic approximation for EPMC in linear discriminant analysis based on two-step monotone missing samples," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 252-263, February.
    9. Chang, Wan-Ying & Richards, Donald St. P., 2010. "Finite-sample inference with monotone incomplete multivariate normal data, II," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 603-620, March.
    10. Yamada, Tomoya, 2013. "Asymptotic properties of canonical correlation analysis for one group with additional observations," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 389-401.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:80:y:2010:i:17-18:p:1284-1288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.