IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i3p422-444.html
   My bibliography  Save this article

Optimal tests for homogeneity of covariance, scale, and shape

Author

Listed:
  • Hallin, Marc
  • Paindaveine, Davy

Abstract

The assumption of homogeneity of covariance matrices is the fundamental prerequisite of a number of classical procedures in multivariate analysis. Despite its importance and long history, however, this problem so far has not been completely settled beyond the traditional and highly unrealistic context of multivariate Gaussian models. And the modified likelihood ratio tests (MLRT) that are used in everyday practice are known to be highly sensitive to violations of Gaussian assumptions. In this paper, we provide a complete and systematic study of the problem, and propose test statistics which, while preserving the optimality features of the MLRT under multinormal assumptions, remain valid under unspecified elliptical densities with finite fourth-order moments. As a first step, the Le Cam LAN approach is used for deriving locally and asymptotically optimal testing procedures for any specified m-tuple of radial densities f=(f1,...,fm). Combined with an estimation of the m densities f1,...,fm, these procedures can be used to construct adaptive tests for the problem. Adaptive tests however typically require very large samples, and pseudo-Gaussian tests-namely, tests that are locally and asymptotically optimal at Gaussian densities while remaining valid under a much broader class of distributions-in general are preferable. We therefore construct two pseudo-Gaussian modifications of the Gaussian version of the optimal test . The first one, , is valid under the class of homokurtic m-tuples f, while the validity of the second, , extends to the heterokurtic ones, that is, to arbitrary m-tuples of elliptical distributions with finite fourth-order moments. We moreover show that these tests are asymptotically equivalent to modified Wald tests recently proposed by Schott [J.R. Schott, Some tests for the equality of covariance matrices, Journal of Statistical Planning and Inference 94 (2001) 25-36]. This settles the optimality properties of the latter. Our results however are much more informative than Schott's. They also allow for computing local powers, and for an ANOVA-type decomposition of the test statistics into two mutually independent parts providing tests against subalternatives of scale and shape heterogeneity, respectively, thus supplying additional insight into the reasons why rejection occurs. Reinforcing a result of Yanagihara et al. [H. Yanagihara, T. Tonda, C. Matsumoto, The effects of nonnormality on asymptotic distributions of some likelihood ratio criteria for testing covariance structures under normal assumption, Journal of Multivariate Analysis 96 (2005) 237-264], we further show why another approach, based on bootstrapped critical values of the Gaussian MLRT statistic, although producing asymptotically valid pseudo-Gaussian tests, is highly unsatisfactory in this context. We also develop optimal pseudo-Gaussian tests for scale homogeneity and for shape homogeneity, based on the same methodology. Finally, the small-sample properties of the proposed procedures are investigated via a Monte-Carlo study.

Suggested Citation

  • Hallin, Marc & Paindaveine, Davy, 2009. "Optimal tests for homogeneity of covariance, scale, and shape," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 422-444, March.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:3:p:422-444
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00147-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas P. Hettmansperger, 2002. "A practical affine equivariant multivariate median," Biometrika, Biometrika Trust, vol. 89(4), pages 851-860, December.
    2. Srivastava, M. S. & Khatri, C. G. & Carter, E. M., 1978. "On monotonicity of the modified likelihood ratio test for the equality of two covariances," Journal of Multivariate Analysis, Elsevier, vol. 8(2), pages 262-267, June.
    3. Arjun Gupta & Jin Xu, 2006. "On Some Tests of the Covariance Matrix Under General Conditions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(1), pages 101-114, March.
    4. Hallin Marc & Paindaveine Davy, 2006. "Parametric and semiparametric inference for shape: the role of the scale functional," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 327-350, December.
    5. Lutz Dümbgen & David E. Tyler, 2005. "On the Breakdown Properties of Some Multivariate M‐Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 247-264, June.
    6. Liebscher, Eckhard, 2005. "A semiparametric density estimator based on elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 205-225, January.
    7. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.
    8. Carter, E. M. & Srivastava, M. S., 1977. "Monotonicity of the power functions of modified likelihood ratio criterion for the homogeneity of variances and of the sphericity test," Journal of Multivariate Analysis, Elsevier, vol. 7(1), pages 229-233, March.
    9. Yanagihara, Hirokazu & Tonda, Tetsuji & Matsumoto, Chieko, 2005. "The effects of nonnormality on asymptotic distributions of some likelihood ratio criteria for testing covariance structures under normal assumption," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 237-264, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frahm, Gabriel, 2009. "Asymptotic distributions of robust shape matrices and scales," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1329-1337, August.
    2. Davy Paindaveine & Joséa Rasoafaraniaina & Thomas Verdebout, 2021. "Preliminary test estimation in uniformly locally asymptotically normal models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 689-707, June.
    3. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    4. Dariush Najarzadeh, 2019. "Testing equality of standardized generalized variances of k multivariate normal populations with arbitrary dimensions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 593-623, December.
    5. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2009. "Optimal rank-based testing for principal component," Working Papers ECARES 2009_013, ULB -- Universite Libre de Bruxelles.
    6. Stephanie Aerts & Gentiane Haesbroeck, 2017. "Robust asymptotic tests for the equality of multivariate coefficients of variation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 163-187, March.
    7. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2011. "Optimal Rank-Based Tests for Common Principal Components," Working Papers ECARES ECARES 2011-032, ULB -- Universite Libre de Bruxelles.
    8. Marc Hallin, 2008. "On the Non Gaussian Asymptotics of the Likelihood Ratio Test Statistic for Homogeneity of Covariance," Working Papers ECARES 2008_039, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paindaveine, Davy, 2008. "A canonical definition of shape," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2240-2247, October.
    2. Paindaveine, Davy & Van Bever, Germain, 2014. "Inference on the shape of elliptical distributions based on the MCD," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 125-144.
    3. Frahm, Gabriel, 2009. "Asymptotic distributions of robust shape matrices and scales," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1329-1337, August.
    4. Davy Paindaveine & Germain Van Bever, 2013. "Inference on the Shape of Elliptical Distribution Based on the MCD," Working Papers ECARES ECARES 2013-27, ULB -- Universite Libre de Bruxelles.
    5. Marc Hallin, 2008. "On the Non Gaussian Asymptotics of the Likelihood Ratio Test Statistic for Homogeneity of Covariance," Working Papers ECARES 2008_039, ULB -- Universite Libre de Bruxelles.
    6. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    7. Hallin Marc & Paindaveine Davy, 2006. "Parametric and semiparametric inference for shape: the role of the scale functional," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 327-350, December.
    8. Frahm, Gabriel & Jaekel, Uwe, 2010. "A generalization of Tyler's M-estimators to the case of incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 374-393, February.
    9. Joni Virta & Niko Lietzén & Henri Nyberg, 2024. "Robust signal dimension estimation via SURE," Statistical Papers, Springer, vol. 65(5), pages 3007-3038, July.
    10. C. Croux & C. Dehon & A. Yadine, 2010. "The k-step spatial sign covariance matrix," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 137-150, September.
    11. Jaakko Nevalainen & Denis Larocque & Hannu Oja, 2007. "A weighted spatial median for clustered data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 355-379, February.
    12. Davy Paindaveine & Germain Van Bever, 2017. "Tyler Shape Depth," Working Papers ECARES ECARES 2017-29, ULB -- Universite Libre de Bruxelles.
    13. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2009. "Optimal rank-based testing for principal component," Working Papers ECARES 2009_013, ULB -- Universite Libre de Bruxelles.
    14. Bernard, Gaspard & Verdebout, Thomas, 2024. "On testing the equality of latent roots of scatter matrices under ellipticity," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    15. Seija Sirkiä & Sara Taskinen & Hannu Oja & David Tyler, 2009. "Tests and estimates of shape based on spatial signs and ranks," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 155-176.
    16. Jaakko Nevalainen & Denis Larocque & Hannu Oja, 2007. "A weighted spatial median for clustered data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 355-379, February.
    17. Paindaveine, Davy, 2009. "On Multivariate Runs Tests for Randomness," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1525-1538.
    18. Sirkiä, Seija & Taskinen, Sara & Oja, Hannu, 2007. "Symmetrised M-estimators of multivariate scatter," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1611-1629, September.
    19. Taskinen, Sara & Koch, Inge & Oja, Hannu, 2012. "Robustifying principal component analysis with spatial sign vectors," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 765-774.
    20. Li, Yang & Wang, Zhaojun & Zou, Changliang, 2016. "A simpler spatial-sign-based two-sample test for high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 192-198.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:3:p:422-444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.