IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i2p374-393.html
   My bibliography  Save this article

A generalization of Tyler's M-estimators to the case of incomplete data

Author

Listed:
  • Frahm, Gabriel
  • Jaekel, Uwe

Abstract

Many different robust estimation approaches for the covariance or shape matrix of multivariate data have been established. Tyler's M-estimator has been recognized as the 'most robust' M-estimator for the shape matrix of elliptically symmetric distributed data. Tyler's M-estimators for location and shape are generalized by taking account of incomplete data. It is shown that the shape matrix estimator remains distribution-free under the class of generalized elliptical distributions. Its asymptotic distribution is also derived and a fast algorithm, which works well even for high-dimensional data, is presented. A simulation study with clean and contaminated data covers the complete-data as well as the incomplete-data case, where the missing data are assumed to be MCAR, MAR, and NMAR.

Suggested Citation

  • Frahm, Gabriel & Jaekel, Uwe, 2010. "A generalization of Tyler's M-estimators to the case of incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 374-393, February.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:2:p:374-393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00314-4
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastian Kring & Svetlozar T. Rachev & Markus Höchstötter & Frank J. Fabozzi & Michele Leonardo Bianchi, 2009. "Multi-tail generalized elliptical distributions for asset returns," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 272-291, July.
    2. Thomas P. Hettmansperger, 2002. "A practical affine equivariant multivariate median," Biometrika, Biometrika Trust, vol. 89(4), pages 851-860, December.
    3. Frahm, Gabriel, 2009. "Asymptotic distributions of robust shape matrices and scales," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1329-1337, August.
    4. Lutz Dümbgen & David E. Tyler, 2005. "On the Breakdown Properties of Some Multivariate M‐Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 247-264, June.
    5. Roderick J. A. Little, 1988. "Robust Estimation of the Mean and Covariance Matrix from Data with Missing Values," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 37(1), pages 23-38, March.
    6. Frahm, Gabriel & Jaekel, Uwe, 2007. "Tyler's M-estimator, random matrix theory, and generalized elliptical distributions with applications to finance," Discussion Papers in Econometrics and Statistics 2/07, University of Cologne, Institute of Econometrics and Statistics.
    7. Paindaveine, Davy, 2008. "A canonical definition of shape," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2240-2247, October.
    8. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    9. Serneels, Sven & Verdonck, Tim, 2008. "Principal component analysis for data containing outliers and missing elements," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1712-1727, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    2. Frahm, Gabriel & Nordhausen, Klaus & Oja, Hannu, 2020. "M-estimation with incomplete and dependent multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    3. Kim, Seungkyu & Park, Seongoh & Lim, Johan & Lee, Sang Han, 2023. "Robust tests for scatter separability beyond Gaussianity," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frahm, Gabriel & Nordhausen, Klaus & Oja, Hannu, 2020. "M-estimation with incomplete and dependent multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    2. Paindaveine, Davy & Van Bever, Germain, 2014. "Inference on the shape of elliptical distributions based on the MCD," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 125-144.
    3. Frahm, Gabriel, 2009. "Asymptotic distributions of robust shape matrices and scales," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1329-1337, August.
    4. Davy Paindaveine & Germain Van Bever, 2013. "Inference on the Shape of Elliptical Distribution Based on the MCD," Working Papers ECARES ECARES 2013-27, ULB -- Universite Libre de Bruxelles.
    5. Joni Virta & Niko Lietzén & Henri Nyberg, 2024. "Robust signal dimension estimation via SURE," Statistical Papers, Springer, vol. 65(5), pages 3007-3038, July.
    6. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    7. C. Croux & C. Dehon & A. Yadine, 2010. "The k-step spatial sign covariance matrix," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 137-150, September.
    8. Bernard, Gaspard & Verdebout, Thomas, 2024. "On testing the equality of latent roots of scatter matrices under ellipticity," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    9. Hallin Marc & Paindaveine Davy, 2006. "Parametric and semiparametric inference for shape: the role of the scale functional," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 327-350, December.
    10. Seija Sirkiä & Sara Taskinen & Hannu Oja & David Tyler, 2009. "Tests and estimates of shape based on spatial signs and ranks," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 155-176.
    11. Taskinen, Sara & Koch, Inge & Oja, Hannu, 2012. "Robustifying principal component analysis with spatial sign vectors," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 765-774.
    12. Davy Paindaveine & Germain Van Bever, 2017. "Tyler Shape Depth," Working Papers ECARES ECARES 2017-29, ULB -- Universite Libre de Bruxelles.
    13. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2014. "Efficient R-Estimation of Principal and Common Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1071-1083, September.
    14. Hallin, Marc & Paindaveine, Davy, 2009. "Optimal tests for homogeneity of covariance, scale, and shape," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 422-444, March.
    15. Bade, Alexander & Frahm, Gabriel & Jaekel, Uwe, 2008. "A general approach to Bayesian portfolio optimization," Discussion Papers in Econometrics and Statistics 1/08, University of Cologne, Institute of Econometrics and Statistics.
    16. Paindaveine, Davy, 2008. "A canonical definition of shape," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2240-2247, October.
    17. Alexander Bade & Gabriel Frahm & Uwe Jaekel, 2009. "A general approach to Bayesian portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(2), pages 337-356, October.
    18. Paindaveine, Davy, 2009. "On Multivariate Runs Tests for Randomness," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1525-1538.
    19. Sirkiä, Seija & Taskinen, Sara & Oja, Hannu, 2007. "Symmetrised M-estimators of multivariate scatter," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1611-1629, September.
    20. Pere, Jaakko & Ilmonen, Pauliina & Viitasaari, Lauri, 2024. "On extreme quantile region estimation under heavy-tailed elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 202(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:2:p:374-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.