IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v199y2024ics0047259x23000787.html
   My bibliography  Save this article

On testing the equality of latent roots of scatter matrices under ellipticity

Author

Listed:
  • Bernard, Gaspard
  • Verdebout, Thomas

Abstract

In the present paper, we tackle the problem of testing H0q:λq>λq+1=⋯=λp, where λ1,…,λp are the scatter matrix eigenvalues of an elliptical distribution on Rp. This is a classical problem in multivariate analysis which is very useful in dimension reduction. We analyse the problem using the Le Cam asymptotic theory of experiments and show that contrary to the testing problems on eigenvalues and eigenvectors of a scatter matrix tackled in Hallin et al. (2010), the non-specification of nuisance parameters has an asymptotic cost for testing H0q. We moreover derive signed-rank tests for the problem that enjoy the property of being asymptotically distribution-free under ellipticity. The van der Waerden rank test uniformly dominates the classical pseudo-Gaussian procedure for the problem. Numerical illustrations show the nice finite-sample properties of our tests.

Suggested Citation

  • Bernard, Gaspard & Verdebout, Thomas, 2024. "On testing the equality of latent roots of scatter matrices under ellipticity," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000787
    DOI: 10.1016/j.jmva.2023.105232
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105232?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dürre, Alexander & Tyler, David E. & Vogel, Daniel, 2016. "On the eigenvalues of the spatial sign covariance matrix in more than two dimensions," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 80-85.
    2. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2014. "Efficient R-Estimation of Principal and Common Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1071-1083, September.
    3. Cator, Eric A. & Lopuhaä, Hendrik P., 2010. "Asymptotic expansion of the minimum covariance determinant estimators," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2372-2388, November.
    4. Frahm, Gabriel, 2009. "Asymptotic distributions of robust shape matrices and scales," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1329-1337, August.
    5. Paindaveine, Davy, 2009. "On Multivariate Runs Tests for Randomness," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1525-1538.
    6. Salibian-Barrera, Matias & Van Aelst, Stefan & Willems, Gert, 2006. "Principal Components Analysis Based on Multivariate MM Estimators With Fast and Robust Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1198-1211, September.
    7. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.
    8. Thomas P. Hettmansperger, 2002. "A practical affine equivariant multivariate median," Biometrika, Biometrika Trust, vol. 89(4), pages 851-860, December.
    9. Nordhausen, Klaus & Oja, Hannu & Tyler, David E., 2022. "Asymptotic and bootstrap tests for subspace dimension," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    10. Virta, Joni, 2021. "Testing for subsphericity when n and p are of different asymptotic order," Statistics & Probability Letters, Elsevier, vol. 179(C).
    11. Paindaveine, Davy, 2006. "A Chernoff-Savage result for shape:On the non-admissibility of pseudo-Gaussian methods," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2206-2220, November.
    12. Paindaveine, Davy, 2008. "A canonical definition of shape," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2240-2247, October.
    13. Sirkku Pauliina Ilmonen & Davy Paindaveine, 2011. "Semiparametrically Efficient Inference Based on Signed Ranks in Symmetric Independent Component Models," Working Papers ECARES ECARES 2011-003, ULB -- Universite Libre de Bruxelles.
    14. Schott, James R., 2006. "A high-dimensional test for the equality of the smallest eigenvalues of a covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 827-843, April.
    15. Waternaux, Christine M., 1984. "Principal components in the nonnormal case: The test of equality of Q roots," Journal of Multivariate Analysis, Elsevier, vol. 14(3), pages 323-335, June.
    16. Wei Luo & Bing Li, 2016. "Combining eigenvalues and variation of eigenvectors for order determination," Biometrika, Biometrika Trust, vol. 103(4), pages 875-887.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paindaveine, Davy & Van Bever, Germain, 2014. "Inference on the shape of elliptical distributions based on the MCD," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 125-144.
    2. Joni Virta & Niko Lietzén & Henri Nyberg, 2024. "Robust signal dimension estimation via SURE," Statistical Papers, Springer, vol. 65(5), pages 3007-3038, July.
    3. Davy Paindaveine & Germain Van Bever, 2013. "Inference on the Shape of Elliptical Distribution Based on the MCD," Working Papers ECARES ECARES 2013-27, ULB -- Universite Libre de Bruxelles.
    4. Bernard, Gaspard & Verdebout, Thomas, 2024. "On some multivariate sign tests for scatter matrix eigenvalues," Econometrics and Statistics, Elsevier, vol. 29(C), pages 252-260.
    5. Hallin Marc & Paindaveine Davy, 2006. "Parametric and semiparametric inference for shape: the role of the scale functional," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 327-350, December.
    6. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    7. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2014. "Efficient R-Estimation of Principal and Common Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1071-1083, September.
    8. Frahm, Gabriel, 2009. "Asymptotic distributions of robust shape matrices and scales," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1329-1337, August.
    9. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2009. "Optimal rank-based testing for principal component," Working Papers ECARES 2009_013, ULB -- Universite Libre de Bruxelles.
    10. Frahm, Gabriel & Nordhausen, Klaus & Oja, Hannu, 2020. "M-estimation with incomplete and dependent multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    11. Paindaveine, Davy, 2008. "A canonical definition of shape," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2240-2247, October.
    12. Nordhausen, Klaus & Oja, Hannu & Tyler, David E., 2022. "Asymptotic and bootstrap tests for subspace dimension," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    13. Taskinen, Sara & Koch, Inge & Oja, Hannu, 2012. "Robustifying principal component analysis with spatial sign vectors," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 765-774.
    14. Frahm, Gabriel & Jaekel, Uwe, 2010. "A generalization of Tyler's M-estimators to the case of incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 374-393, February.
    15. Davy Paindaveine & Julien Remy & Thomas Verdebout, 2019. "Sign Tests for Weak Principal Directions," Working Papers ECARES 2019-01, ULB -- Universite Libre de Bruxelles.
    16. C. Croux & C. Dehon & A. Yadine, 2010. "The k-step spatial sign covariance matrix," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 137-150, September.
    17. Jaakko Nevalainen & Denis Larocque & Hannu Oja, 2007. "A weighted spatial median for clustered data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 355-379, February.
    18. Davy Paindaveine & Germain Van Bever, 2017. "Tyler Shape Depth," Working Papers ECARES ECARES 2017-29, ULB -- Universite Libre de Bruxelles.
    19. Davy Paindaveine & Thomas Verdebout, 2011. "Rank Tests for Elliptical Graphical Modeling," Working Papers ECARES ECARES 2011-039, ULB -- Universite Libre de Bruxelles.
    20. Seija Sirkiä & Sara Taskinen & Hannu Oja & David Tyler, 2009. "Tests and estimates of shape based on spatial signs and ranks," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 155-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.