IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v32y2005i2p247-264.html
   My bibliography  Save this article

On the Breakdown Properties of Some Multivariate M‐Functionals

Author

Listed:
  • LUTZ DÜMBGEN
  • DAVID E. TYLER

Abstract

. For probability distributions on ℝq, a detailed study of the breakdown properties of some multivariate M‐functionals related to Tyler's [Ann. Statist. 15 (1987) 234] ‘distribution‐free’ M‐functional of scatter is given. These include a symmetrized version of Tyler's M‐functional of scatter, and the multivariate t M‐functionals of location and scatter. It is shown that for ‘smooth’ distributions, the (contamination) breakdown point of Tyler's M‐functional of scatter and of its symmetrized version are 1/q and , respectively. For the multivariate t M‐functional which arises from the maximum likelihood estimate for the parameters of an elliptical t distribution on ν ≥ 1 degrees of freedom the breakdown point at smooth distributions is 1/(q + ν). Breakdown points are also obtained for general distributions, including empirical distributions. Finally, the sources of breakdown are investigated. It turns out that breakdown can only be caused by contaminating distributions that are concentrated near low‐dimensional subspaces.

Suggested Citation

  • Lutz Dümbgen & David E. Tyler, 2005. "On the Breakdown Properties of Some Multivariate M‐Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 247-264, June.
  • Handle: RePEc:bla:scjsta:v:32:y:2005:i:2:p:247-264
    DOI: 10.1111/j.1467-9469.2005.00425.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9469.2005.00425.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9469.2005.00425.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davy Paindaveine & Germain Van Bever, 2013. "Inference on the Shape of Elliptical Distribution Based on the MCD," Working Papers ECARES ECARES 2013-27, ULB -- Universite Libre de Bruxelles.
    2. Roelant, E. & Van Aelst, S. & Croux, C., 2009. "Multivariate generalized S-estimators," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 876-887, May.
    3. Frahm, Gabriel & Jaekel, Uwe, 2010. "A generalization of Tyler's M-estimators to the case of incomplete data," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 374-393, February.
    4. Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
    5. Hallin Marc & Paindaveine Davy, 2006. "Parametric and semiparametric inference for shape: the role of the scale functional," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 327-350, December.
    6. Taskinen, Sara & Koch, Inge & Oja, Hannu, 2012. "Robustifying principal component analysis with spatial sign vectors," Statistics & Probability Letters, Elsevier, vol. 82(4), pages 765-774.
    7. Joni Virta & Niko Lietzén & Henri Nyberg, 2024. "Robust signal dimension estimation via SURE," Statistical Papers, Springer, vol. 65(5), pages 3007-3038, July.
    8. Robert Serfling & Satyaki Mazumder, 2013. "Computationally easy outlier detection via projection pursuit with finitely many directions," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 447-461, June.
    9. Frahm, Gabriel, 2009. "Asymptotic distributions of robust shape matrices and scales," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1329-1337, August.
    10. Paindaveine, Davy, 2009. "On Multivariate Runs Tests for Randomness," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1525-1538.
    11. C. Croux & C. Dehon & A. Yadine, 2010. "The k-step spatial sign covariance matrix," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(2), pages 137-150, September.
    12. Hallin, Marc & Paindaveine, Davy, 2009. "Optimal tests for homogeneity of covariance, scale, and shape," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 422-444, March.
    13. Seija Sirkiä & Sara Taskinen & Hannu Oja & David Tyler, 2009. "Tests and estimates of shape based on spatial signs and ranks," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(2), pages 155-176.
    14. Paindaveine, Davy & Van Bever, Germain, 2014. "Inference on the shape of elliptical distributions based on the MCD," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 125-144.
    15. Sirkiä, Seija & Taskinen, Sara & Oja, Hannu, 2007. "Symmetrised M-estimators of multivariate scatter," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1611-1629, September.
    16. Paindaveine, Davy, 2008. "A canonical definition of shape," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2240-2247, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:32:y:2005:i:2:p:247-264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.