IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v100y2009i1p102-111.html
   My bibliography  Save this article

Local linear regression for functional predictor and scalar response

Author

Listed:
  • Baíllo, Amparo
  • Grané, Aurea

Abstract

The aim of this work is to introduce a new nonparametric regression technique in the context of functional covariate and scalar response. We propose a local linear regression estimator and study its asymptotic behaviour. Its finite-sample performance is compared with a Nadayara-Watson type kernel regression estimator and with the linear regression estimator via a Monte Carlo study and the analysis of two real data sets. In all the scenarios considered, the local linear regression estimator performs better than the kernel one, in the sense that the mean squared prediction error is lower.

Suggested Citation

  • Baíllo, Amparo & Grané, Aurea, 2009. "Local linear regression for functional predictor and scalar response," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 102-111, January.
  • Handle: RePEc:eee:jmvana:v:100:y:2009:i:1:p:102-111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(08)00097-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardot, Hervé & Sarda, Pacal, 2005. "Estimation in generalized linear models for functional data via penalized likelihood," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 24-41, January.
    2. Antonio Cuevas & Manuel Febrero & Ricardo Fraiman, 2007. "Robust estimation and classification for functional data via projection-based depth notions," Computational Statistics, Springer, vol. 22(3), pages 481-496, September.
    3. Gareth M. James, 2002. "Generalized linear models with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 411-432, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chouaf Abdelhak & Laksaci Ali, 2012. "On the functional local linear estimate for spatial regression," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 189-214, August.
    2. Rachdi, Mustapha & Laksaci, Ali & Demongeot, Jacques & Abdali, Abdel & Madani, Fethi, 2014. "Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 53-68.
    3. Abderrahmane Belguerna & Hamza Daoudi & Khadidja Abdelhak & Boubaker Mechab & Zouaoui Chikr Elmezouar & Fatimah Alshahrani, 2024. "A Comprehensive Analysis of MSE in Estimating Conditional Hazard Functions: A Local Linear, Single Index Approach for MAR Scenarios," Mathematics, MDPI, vol. 12(3), pages 1-20, February.
    4. Mustapha Rachdi & Ali Laksaci & Zoulikha Kaid & Abbassia Benchiha & Fahimah A. Al‐Awadhi, 2021. "k‐Nearest neighbors local linear regression for functional and missing data at random," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 42-65, February.
    5. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2013. "Functional contour regression," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 1-13.
    6. Boj, Eva & Delicado, Pedro & Fortiana, Josep, 2010. "Distance-based local linear regression for functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 429-437, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Febrero-Bande, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 35-40, March.
    2. Mousavi, Seyed Nourollah & Sørensen, Helle, 2017. "Multinomial functional regression with wavelets and LASSO penalization," Econometrics and Statistics, Elsevier, vol. 1(C), pages 150-166.
    3. Tian, Tian Siva & James, Gareth M., 2013. "Interpretable dimension reduction for classifying functional data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 282-296.
    4. Manuel Febrero-Bande, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 35-40, March.
    5. Li, Pai-Ling & Chiou, Jeng-Min & Shyr, Yu, 2017. "Functional data classification using covariate-adjusted subspace projection," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 21-34.
    6. Baíllo, Amparo & Grané, Aurea, 2007. "Local linear regression for functional predictor and scalar response," DES - Working Papers. Statistics and Econometrics. WS ws076115, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. Ciarleglio, Adam & Todd Ogden, R., 2016. "Wavelet-based scalar-on-function finite mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 86-96.
    8. Sudaraka Tholkage & Qi Zheng & Karunarathna B. Kulasekera, 2022. "Conditional Kaplan–Meier Estimator with Functional Covariates for Time-to-Event Data," Stats, MDPI, vol. 5(4), pages 1-17, November.
    9. Manuel Febrero-Bande & Wenceslao González-Manteiga, 2013. "Generalized additive models for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 278-292, June.
    10. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    11. Liu, Xi & Divani, Afshin A. & Petersen, Alexander, 2022. "Truncated estimation in functional generalized linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    12. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    13. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
    14. M. Aguilera-Morillo & Ana Aguilera & Manuel Escabias & Mariano Valderrama, 2013. "Penalized spline approaches for functional logit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 251-277, June.
    15. Escabias, M. & Aguilera, A.M. & Valderrama, M.J., 2007. "Functional PLS logit regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4891-4902, June.
    16. Ahmedou, Aziza & Marion, Jean-Marie & Pumo, Besnik, 2016. "Generalized linear model with functional predictors and their derivatives," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 313-324.
    17. F. Ferraty & A. Goia & E. Salinelli & P. Vieu, 2013. "Functional projection pursuit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 293-320, June.
    18. Chiou, Jeng-Min & Muller, Hans-Georg, 2007. "Diagnostics for functional regression via residual processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4849-4863, June.
    19. Jonathan E. Gellar & Elizabeth Colantuoni & Dale M. Needham & Ciprian M. Crainiceanu, 2014. "Variable-Domain Functional Regression for Modeling ICU Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1425-1439, December.
    20. Kalogridis, Ioannis, 2024. "Robust and adaptive functional logistic regression," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:100:y:2009:i:1:p:102-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.