IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v73y2014icp53-68.html
   My bibliography  Save this article

Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data

Author

Listed:
  • Rachdi, Mustapha
  • Laksaci, Ali
  • Demongeot, Jacques
  • Abdali, Abdel
  • Madani, Fethi

Abstract

The problem of the nonparametric local linear estimation of the conditional density of a scalar response variable given a random variable taking values in a semi-metric space is considered. Some theoretical and practical asymptotic properties of this estimator are established. The usefulness of the estimator is highlighted through the exact expression involved in the leading terms of the quadratic error, and by conducting a computational investigation to show the superiority of this estimation method for the conditional density and then for the conditional mode. Moreover, in order to verify the pertinence of the technique, from a practical point of view, it is applied to a real dataset.

Suggested Citation

  • Rachdi, Mustapha & Laksaci, Ali & Demongeot, Jacques & Abdali, Abdel & Madani, Fethi, 2014. "Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 53-68.
  • Handle: RePEc:eee:csdana:v:73:y:2014:i:c:p:53-68
    DOI: 10.1016/j.csda.2013.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313004490
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Juhyun & Gasser, Theo & Rousson, Valentin, 2009. "Structural components in functional data," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3452-3465, July.
    2. Arribas-Gil, Ana & Müller, Hans-Georg, 2014. "Pairwise dynamic time warping for event data," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 255-268.
    3. Vieu, Philippe, 1991. "Quadratic errors for nonparametric estimates under dependence," Journal of Multivariate Analysis, Elsevier, vol. 39(2), pages 324-347, November.
    4. Frédéric Ferraty & Philippe Vieu, 2002. "The Functional Nonparametric Model and Application to Spectrometric Data," Computational Statistics, Springer, vol. 17(4), pages 545-564, December.
    5. K. Benhenni & F. Ferraty & M. Rachdi & P. Vieu, 2007. "Local smoothing regression with functional data," Computational Statistics, Springer, vol. 22(3), pages 353-369, September.
    6. Ferraty, Frederic & Quintela-del-Río, Alejandro & Vieu, Philippe, 2012. "Specification Test For Conditional Distribution With Functional Data," Econometric Theory, Cambridge University Press, vol. 28(2), pages 363-386, April.
    7. J. Barrientos-Marin & F. Ferraty & P. Vieu, 2010. "Locally modelled regression and functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(5), pages 617-632.
    8. Amiri, Aboubacar & Crambes, Christophe & Thiam, Baba, 2014. "Recursive estimation of nonparametric regression with functional covariate," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 154-172.
    9. Manteiga, Wenceslao Gonzalez & Vieu, Philippe, 2007. "Statistics for Functional Data," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4788-4792, June.
    10. Baíllo, Amparo & Grané, Aurea, 2009. "Local linear regression for functional predictor and scalar response," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 102-111, January.
    11. M'hamed Ezzahrioui & Elias Ould-Saïd, 2008. "Asymptotic normality of a nonparametric estimator of the conditional mode function for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(1), pages 3-18.
    12. Fan, Jianqing & Yao, Qiwei & Tong, Howell, 1996. "Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems," LSE Research Online Documents on Economics 6704, London School of Economics and Political Science, LSE Library.
    13. Frédéric Ferraty & Ali Laksaci & Philippe Vieu, 2006. "Estimating Some Characteristics of the Conditional Distribution in Nonparametric Functional Models," Statistical Inference for Stochastic Processes, Springer, vol. 9(1), pages 47-76, May.
    14. Keilegom, Ingrid Van & Akritas, Michael G. & Veraverbeke, Noel, 2001. "Estimation of the conditional distribution in regression with censored data: a comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 35(4), pages 487-500, February.
    15. Epifanio, Irene & Ventura-Campos, Noelia, 2011. "Functional data analysis in shape analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2758-2773, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fahimah A. Al-Awadhi & Zoulikha Kaid & Ali Laksaci & Idir Ouassou & Mustapha Rachdi, 2019. "Functional data analysis: local linear estimation of the $$L_1$$ L 1 -conditional quantiles," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 217-240, June.
    2. Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
    3. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    4. Bouabsa Wahiba, 2023. "The Estimating of the Conditional Density with Application to the Mode Function in Scalar-On-Function Regression Structure: Local Linear Approach with Missing at Random," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 27(1), pages 17-32, March.
    5. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    6. Somia Ayad & Ali Laksaci & Saâdia Rahmani & Rachida Rouane, 2020. "On the local linear modelization of the conditional density for functional and ergodic data," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 237-254, August.
    7. Oussama Bouanani & Saâdia Rahmani & Ali Laksaci & Mustapha Rachdi, 2020. "Asymptotic normality of conditional mode estimation for functional dependent data," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 465-481, June.
    8. Kara, Lydia-Zaitri & Laksaci, Ali & Rachdi, Mustapha & Vieu, Philippe, 2017. "Data-driven kNN estimation in nonparametric functional data analysis," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 176-188.
    9. Chaouch, Mohamed, 2019. "Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 129-148.
    10. Mustapha Rachdi & Ali Laksaci & Zoulikha Kaid & Abbassia Benchiha & Fahimah A. Al‐Awadhi, 2021. "k‐Nearest neighbors local linear regression for functional and missing data at random," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 42-65, February.
    11. Xiong, Xianzhu & Ou, Meijuan & Chen, Ailian, 2021. "Reweighted Nadaraya–Watson estimation of conditional density function in the right-censored model," Statistics & Probability Letters, Elsevier, vol. 168(C).
    12. Karim Benhenni & Sonia Hedli-Griche & Mustapha Rachdi, 2017. "Regression models with correlated errors based on functional random design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-21, March.
    13. Benhenni, Karim & Hassan, Ali Hajj & Su, Yingcai, 2019. "Local polynomial estimation of regression operators from functional data with correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 80-94.
    14. Demongeot, Jacques & Hamie, Ali & Laksaci, Ali & Rachdi, Mustapha, 2016. "Relative-error prediction in nonparametric functional statistics: Theory and practice," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 261-268.
    15. Boukhiar, Souad & Mourid, Tahar, 2022. "Resolvent estimators for functional autoregressive processes with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    16. Litimein, Ouahiba & Laksaci, Ali & Ait-Hennani, Larbi & Mechab, Boubaker & Rachdi, Mustapha, 2024. "Asymptotic normality of the local linear estimator of the functional expectile regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    17. Demongeot, Jacques & Naceri, Amina & Laksaci, Ali & Rachdi, Mustapha, 2017. "Local linear regression modelization when all variables are curves," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 37-44.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chagny, Gaëlle & Roche, Angelina, 2016. "Adaptive estimation in the functional nonparametric regression model," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 105-118.
    2. Mustapha Rachdi & Ali Laksaci & Zoulikha Kaid & Abbassia Benchiha & Fahimah A. Al‐Awadhi, 2021. "k‐Nearest neighbors local linear regression for functional and missing data at random," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 42-65, February.
    3. Martínez-Camblor, Pablo & Corral, Norberto, 2011. "Repeated measures analysis for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3244-3256, December.
    4. Ling, Nengxiang & Xu, Qian, 2012. "Asymptotic normality of conditional density estimation in the single index model for functional time series data," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2235-2243.
    5. Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
    6. Chouaf Abdelhak & Laksaci Ali, 2012. "On the functional local linear estimate for spatial regression," Statistics & Risk Modeling, De Gruyter, vol. 29(3), pages 189-214, August.
    7. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    8. Demongeot, Jacques & Hamie, Ali & Laksaci, Ali & Rachdi, Mustapha, 2016. "Relative-error prediction in nonparametric functional statistics: Theory and practice," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 261-268.
    9. Laurent Delsol, 2013. "No effect tests in regression on functional variable and some applications to spectrometric studies," Computational Statistics, Springer, vol. 28(4), pages 1775-1811, August.
    10. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    11. Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
    12. Boente, Graciela & Vahnovan, Alejandra, 2017. "Robust estimators in semi-functional partial linear regression models," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 59-84.
    13. Boj, Eva & Delicado, Pedro & Fortiana, Josep, 2010. "Distance-based local linear regression for functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 429-437, February.
    14. Fatiha Messaci & Nahima Nemouchi & Idir Ouassou & Mustapha Rachdi, 2015. "Local polynomial modelling of the conditional quantile for functional data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 597-622, November.
    15. Yousri Slaoui, 2020. "Recursive nonparametric regression estimation for dependent strong mixing functional data," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 665-697, October.
    16. M'hamed Ezzahrioui & Elias Ould Saïd, 2010. "Some asymptotic results of a non‐parametric conditional mode estimator for functional time‐series data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(2), pages 171-201, May.
    17. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    18. Fahimah A. Al-Awadhi & Zoulikha Kaid & Ali Laksaci & Idir Ouassou & Mustapha Rachdi, 2019. "Functional data analysis: local linear estimation of the $$L_1$$ L 1 -conditional quantiles," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 217-240, June.
    19. Kamal Boukhetala & Jean-François Dupuy, 2019. "Modélisation Stochastique et Statistique Book of Proceedings," Post-Print hal-02593238, HAL.
    20. Wang, Guochang & Lin, Nan & Zhang, Baoxue, 2012. "Functional linear regression after spline transformation," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 587-601.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:73:y:2014:i:c:p:53-68. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.