IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v115y2017icp21-34.html
   My bibliography  Save this article

Functional data classification using covariate-adjusted subspace projection

Author

Listed:
  • Li, Pai-Ling
  • Chiou, Jeng-Min
  • Shyr, Yu

Abstract

We propose a covariate-adjusted subspace projection method for classifying functional data, where the covariate effects on the response functions influence the classification outcome. The proposed method is a subspace classifier based on functional projection, and the covariates affect the response function through the mean of a functional regression model. We assume that the response functions in each class are embedded in a class-specific subspace spanned by a covariate-adjusted mean function and a set of eigenfunctions of the covariance kernel through the covariate-adjusted Karhunen–Loève expansion. A newly observed response function is classified into the optimally predicted class that has the minimal L2 distance between the observation and its projection onto the subspaces among all classes. As supported in our simulation study, the covariate adjustment is useful for functional classification, especially when the covariate effects on the mean functions are significantly different among the classes. The data applications to meat quality control and lung cancer mass spectrometry demonstrate the usefulness of the proposed method in functional classification.

Suggested Citation

  • Li, Pai-Ling & Chiou, Jeng-Min & Shyr, Yu, 2017. "Functional data classification using covariate-adjusted subspace projection," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 21-34.
  • Handle: RePEc:eee:csdana:v:115:y:2017:i:c:p:21-34
    DOI: 10.1016/j.csda.2017.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947317300981
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2017.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jeng‐Min Chiou & Pai‐Ling Li, 2007. "Functional clustering and identifying substructures of longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 679-699, September.
    2. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    3. Carlo Sguera & Pedro Galeano & Rosa Lillo, 2014. "Spatial depth-based classification for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(4), pages 725-750, December.
    4. Chiou, Jeng-Min & Li, Pai-Ling, 2008. "Correlation-Based Functional Clustering via Subspace Projection," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1684-1692.
    5. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    6. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    7. Hervé Cardot, 2007. "Conditional Functional Principal Components Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(2), pages 317-335, June.
    8. Antonio Cuevas & Manuel Febrero & Ricardo Fraiman, 2007. "Robust estimation and classification for functional data via projection-based depth notions," Computational Statistics, Springer, vol. 22(3), pages 481-496, September.
    9. Gareth M. James, 2002. "Generalized linear models with functional predictors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 411-432, August.
    10. Park, Changyi & Koo, Ja-Yong & Kim, Sujong & Sohn, Insuk & Lee, Jae Won, 2008. "Classification of gene functions using support vector machine for time-course gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2578-2587, January.
    11. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Rejoinder on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 52-58, March.
    12. Jeng‐Min Chiou & Hans‐Georg Müller & Jane‐Ling Wang, 2003. "Functional quasi‐likelihood regression models with smooth random effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 405-423, May.
    13. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    14. Gareth M. James & Trevor J. Hastie, 2001. "Functional linear discriminant analysis for irregularly sampled curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 533-550.
    15. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Rejoinder on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 52-58, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    2. Zhang, Xin & Wang, Chong & Wu, Yichao, 2018. "Functional envelope for model-free sufficient dimension reduction," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 37-50.
    3. Chen, Di-Rong & Cheng, Kun & Liu, Chao, 2022. "Framelet block thresholding estimator for sparse functional data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    5. Rodney V. Fonseca & Aluísio Pinheiro, 2020. "Wavelet estimation of the dimensionality of curve time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1175-1204, October.
    6. Chen, Lu-Hung & Jiang, Ci-Ren, 2018. "Sensible functional linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 39-52.
    7. Alonso, Andrés M. & Casado, David & Romo, Juan, 2012. "Supervised classification for functional data: A weighted distance approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2334-2346.
    8. Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast DD-classification of functional data," Statistical Papers, Springer, vol. 58(4), pages 1055-1089, December.
    9. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    10. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    11. Chen, Xuerong & Li, Haoqi & Liang, Hua & Lin, Huazhen, 2019. "Functional response regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 218-233.
    12. Chiou, Jeng-Min & Muller, Hans-Georg, 2007. "Diagnostics for functional regression via residual processes," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4849-4863, June.
    13. Maria Ruiz-Medina & Rosa Espejo & Elvira Romano, 2014. "Spatial functional normal mixed effect approach for curve classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 257-285, September.
    14. repec:cte:wsrepe:24606 is not listed on IDEAS
    15. Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
    16. Zhang, Yi-Chen & Sakhanenko, Lyudmila, 2019. "The naive Bayes classifier for functional data," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 137-146.
    17. Manuel Febrero-Bande, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 35-40, March.
    18. Mousavi, Seyed Nourollah & Sørensen, Helle, 2017. "Multinomial functional regression with wavelets and LASSO penalization," Econometrics and Statistics, Elsevier, vol. 1(C), pages 150-166.
    19. S. Barahona & P. Centella & X. Gual-Arnau & M. V. Ibáñez & A. Simó, 2020. "Supervised classification of geometrical objects by integrating currents and functional data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 637-660, September.
    20. Tian, Tian Siva & James, Gareth M., 2013. "Interpretable dimension reduction for classifying functional data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 282-296.
    21. Manuel Febrero-Bande, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 35-40, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:115:y:2017:i:c:p:21-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.