IDEAS home Printed from https://ideas.repec.org/a/eee/jfpoli/v121y2023ics0306919223001446.html
   My bibliography  Save this article

Sustainable maize intensification through site-specific nutrient management advice: Experimental evidence from Nigeria

Author

Listed:
  • Maertens, Miet
  • Oyinbo, Oyakhilomen
  • Abdoulaye, Tahirou
  • Chamberlin, Jordan

Abstract

There is growing evidence on the impacts of site-specific nutrient management (SSNM) from Asia. The evidence for Sub-Saharan Africa (SSA), where SSNM developments are more recent and where conditions concerning soil fertility and fertilizer use differ importantly from those in Asia, is extremely scarce. We evaluate a SSNM advisory tool that allows extension agents to generate fertilizer recommendations tailored to the specific situation of an individual farmer’s field, using a three-year randomized controlled trial with 792 smallholder farmers in the maize belt of northern Nigeria. Two treatment arms were implemented: T1 and T2 both provide SSNM information on nutrient use and management, but T2 provides additional information on maize price distributions and the associated variability of expected returns to fertilizer use. We estimate average and heterogenous intent-to-treat effects on agronomic, economic and environmental plot-level outcomes. We find that T1 and T2 lead to substantial increases (up to 116%) in the adoption of good fertilizer management practices and T2 leads to incremental increases (up to 18%) in nutrient application rates, yields and revenues. Both treatments improve low levels of nutrient use efficiency and reduce high levels of greenhouse gas emission intensity, after two years of treatment. Our findings underscore the possibility of a more gradual and sustainable intensification of smallholder agriculture in SSA, as compared with the Asian Green Revolution, through increased fertilizer use accompanied by improved fertilizer management.

Suggested Citation

  • Maertens, Miet & Oyinbo, Oyakhilomen & Abdoulaye, Tahirou & Chamberlin, Jordan, 2023. "Sustainable maize intensification through site-specific nutrient management advice: Experimental evidence from Nigeria," Food Policy, Elsevier, vol. 121(C).
  • Handle: RePEc:eee:jfpoli:v:121:y:2023:i:c:s0306919223001446
    DOI: 10.1016/j.foodpol.2023.102546
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306919223001446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.foodpol.2023.102546?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John A. List & Azeem M. Shaikh & Yang Xu, 2019. "Multiple hypothesis testing in experimental economics," Experimental Economics, Springer;Economic Science Association, vol. 22(4), pages 773-793, December.
    2. Oyakhilomen Oyinbo & Jordan Chamberlin & Tahirou Abdoulaye & Miet Maertens, 2022. "Digital extension, price risk, and farm performance: experimental evidence from Nigeria," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(2), pages 831-852, March.
    3. Rachid Laajaj & Karen Macours & Cargele Masso & Moses Thuita & Bernard Vanlauwe, 2020. "Reconciling yield gains in agronomic trials with returns under African smallholder conditions," PSE-Ecole d'économie de Paris (Postprint) halshs-02973685, HAL.
    4. Shaibu Mellon Bedi & Lukas Kornher & Joachim von Braun & Bekele Hundie Kotu, 2022. "Stimulating Innovations for Sustainable Agricultural Practices among Smallholder Farmers: Persistence of Intervention Matters," Journal of Development Studies, Taylor & Francis Journals, vol. 58(9), pages 1651-1667, September.
    5. Aminou Arouna & Jeffrey D. Michler & Wilfried G. Yergo & Kazuki Saito, 2021. "One Size Fits All? Experimental Evidence on the Digital Delivery of Personalized Extension Advice in Nigeria," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 596-619, March.
    6. Pampolino, M.F. & Manguiat, I.J. & Ramanathan, S. & Gines, H.C. & Tan, P.S. & Chi, T.T.N. & Rajendran, R. & Buresh, R.J., 2007. "Environmental impact and economic benefits of site-specific nutrient management (SSNM) in irrigated rice systems," Agricultural Systems, Elsevier, vol. 93(1-3), pages 1-24, March.
    7. Rurinda, Jairos & Zingore, Shamie & Jibrin, Jibrin M. & Balemi, Tesfaye & Masuki, Kenneth & Andersson, Jens A. & Pampolino, Mirasol F. & Mohammed, Ibrahim & Mutegi, James & Kamara, Alpha Y. & Vanlauwe, 2020. "Science-based decision support for formulating crop fertilizer recommendations in sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 180(C).
    8. Timothy G. Conley & Christopher R. Udry, 2010. "Learning about a New Technology: Pineapple in Ghana," American Economic Review, American Economic Association, vol. 100(1), pages 35-69, March.
    9. Burke, William J. & Frossard, Emmanuel & Kabwe, Stephen & Jayne, Thom S., 2019. "Understanding fertilizer adoption and effectiveness on maize in Zambia," Food Policy, Elsevier, vol. 86(C), pages 1-1.
    10. Chris M. Boyd & Marc F. Bellemare, 2020. "The Microeconomics of Agricultural Price Risk," Annual Review of Resource Economics, Annual Reviews, vol. 12(1), pages 149-169, October.
    11. Rebecca F. Graham & Sam E. Wortman & Cameron M. Pittelkow, 2017. "Comparison of Organic and Integrated Nutrient Management Strategies for Reducing Soil N 2 O Emissions," Sustainability, MDPI, vol. 9(4), pages 1-14, March.
    12. David S. Lee, 2009. "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(3), pages 1071-1102.
    13. Lambrecht, Isabel & Vanlauwe, Bernard & Merckx, Roel & Maertens, Miet, 2014. "Understanding the Process of Agricultural Technology Adoption: Mineral Fertilizer in Eastern DR Congo," World Development, Elsevier, vol. 59(C), pages 132-146.
    14. Ayalew, Hailemariam & Chamberlin, Jordan & Newman, Carol, 2022. "Site-specific agronomic information and technology adoption: A field experiment from Ethiopia," Journal of Development Economics, Elsevier, vol. 156(C).
    15. Veronique Theriault & Melinda Smale & Hamza Haider, 2018. "Economic incentives to use fertilizer on maize under differing agro-ecological conditions in Burkina Faso," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 10(5), pages 1263-1277, October.
    16. Keijiro Otsuka & Rie Muraoka, 2017. "A Green Revolution for Sub-Saharan Africa: Past Failures and Future Prospects," Journal of African Economies, Centre for the Study of African Economies, vol. 26(suppl_1), pages 73-98.
    17. Lenis Saweda O. Liverpool-Tasie & Ayala Wineman & Sarah Young & Justice Tambo & Carolina Vargas & Thomas Reardon & Guigonan Serge Adjognon & Jaron Porciello & Nasra Gathoni & Livia Bizikova & Alessand, 2020. "A scoping review of market links between value chain actors and small-scale producers in developing regions," Nature Sustainability, Nature, vol. 3(10), pages 799-808, October.
    18. Christine M. Moser & Christopher B. Barrett, 2006. "The complex dynamics of smallholder technology adoption: the case of SRI in Madagascar," Agricultural Economics, International Association of Agricultural Economists, vol. 35(3), pages 373-388, November.
    19. Kijima, Yoko & Otsuka, Keijiro & Sserunkuuma, Dick, 2011. "An Inquiry into Constraints on a Green Revolution in Sub-Saharan Africa: The Case of NERICA Rice in Uganda," World Development, Elsevier, vol. 39(1), pages 77-86, January.
    20. Marup Hossain & Mohammad Abdul Malek & Md Amzad Hossain & Md Hasib Reza & Md Shakil Ahmed, 2019. "Agricultural Microcredit for Tenant Farmers: Evidence from a Field Experiment in Bangladesh," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(3), pages 692-709.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oyakhilomen Oyinbo & Jordan Chamberlin & Tahirou Abdoulaye & Miet Maertens, 2022. "Digital extension, price risk, and farm performance: experimental evidence from Nigeria," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(2), pages 831-852, March.
    2. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    3. Abate, Gashaw T. & Bernard, Tanguy & Makhija, Simrin & Spielman, David J., 2023. "Accelerating technical change through ICT: Evidence from a video-mediated extension experiment in Ethiopia," World Development, Elsevier, vol. 161(C).
    4. Ayalew, Hailemariam & Chamberlin, Jordan & Newman, Carol, 2022. "Site-specific agronomic information and technology adoption: A field experiment from Ethiopia," Journal of Development Economics, Elsevier, vol. 156(C).
    5. Mao, Hui & Chai, Yujia & Shao, Xiaoxuan & Chang, Xue, 2024. "Digital extension and farmers' adoption of climate adaptation technology: An empirical analysis of China," Land Use Policy, Elsevier, vol. 143(C).
    6. Berazneva, Julia & Maertens, Annemie & Mhango, Wezi & Michelson, Hope, 2023. "Paying for agricultural information in Malawi: The role of soil heterogeneity," Journal of Development Economics, Elsevier, vol. 165(C).
    7. Bonan, Jacopo & Battiston, Pietro & Bleck, Jaimie & LeMay-Boucher, Philippe & Pareglio, Stefano & Sarr, Bassirou & Tavoni, Massimo, 2021. "Social interaction and technology adoption: Experimental evidence from improved cookstoves in Mali," World Development, Elsevier, vol. 144(C).
    8. Christopher B. Barrett & Asad Islam & Abdul Mohammad Malek & Debayan Pakrashi & Ummul Ruthbah, 2022. "Experimental Evidence on Adoption and Impact of the System of Rice Intensification," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 4-32, January.
    9. Arouna, Aminou & Michler, Jeffrey D. & Lokossou, Jourdain C., 2021. "Contract farming and rural transformation: Evidence from a field experiment in Benin," Journal of Development Economics, Elsevier, vol. 151(C).
    10. Kosmowski, Frederic & Chamberlin, Jordan & Ayalew, Hailemariam & Sida, Tesfaye & Abay, Kibrom & Craufurd, Peter, 2021. "How accurate are yield estimates from crop cuts? Evidence from smallholder maize farms in Ethiopia," Food Policy, Elsevier, vol. 102(C).
    11. Barrett, Christopher B. & Islam, Asad & Pakrashi, Debayan & Ruthbah, Ummul, 2021. "Experimental Evidence on Adoption and Impact of the System of rice Intensification," Working Papers 309950, Cornell University, Department of Applied Economics and Management.
    12. Garbero, A. & Marion, P., 2018. "IFAD RESEARCH SERIES 28 - Understanding the dynamics of adoption decisions and their poverty impacts: the case of improved maize seeds in Uganda," IFAD Research Series 280077, International Fund for Agricultural Development (IFAD).
    13. Estelle Koussoubé & Céline Nauges, 2017. "Returns to fertiliser use: Does it pay enough? Some new evidence from Sub-Saharan Africa," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(2), pages 183-210.
    14. Yitayew, Asresu & Abdulai, Awudu & Yigezu, Yigezu A. & Deneke, Tilaye T. & Kassie, Girma T., 2021. "Impact of agricultural extension services on the adoption of improved wheat variety in Ethiopia: A cluster randomized controlled trial," World Development, Elsevier, vol. 146(C).
    15. Aminou Arouna & Jeffrey D. Michler & Wilfried G. Yergo & Kazuki Saito, 2021. "One Size Fits All? Experimental Evidence on the Digital Delivery of Personalized Extension Advice in Nigeria," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 596-619, March.
    16. Nakano, Yuko & Tsusaka, Takuji W. & Aida, Takeshi & Pede, Valerien O., 2018. "Is farmer-to-farmer extension effective? The impact of training on technology adoption and rice farming productivity in Tanzania," World Development, Elsevier, vol. 105(C), pages 336-351.
    17. Fafchamps, Marcel & Islam, Asad & Malek, Mohammad Abdul & Pakrashi, Debayan, 2020. "Can referral improve targeting? Evidence from an agricultural training experiment," Journal of Development Economics, Elsevier, vol. 144(C).
    18. Khushbu Mishra & Abdoul G. Sam & Gracious M. Diiro & Mario J. Miranda, 2020. "Gender and the dynamics of technology adoption: Empirical evidence from a household‐level panel data," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 857-870, November.
    19. Sriroop Chaudhuri & Mimi Roy & Louis M. McDonald & Yves Emendack, 2021. "Reflections on farmers’ social networks: a means for sustainable agricultural development?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2973-3008, March.
    20. Wollni, Meike & Andersson, Camilla, 2014. "Spatial patterns of organic agriculture adoption: Evidence from Honduras," Ecological Economics, Elsevier, vol. 97(C), pages 120-128.

    More about this item

    Keywords

    Technology adoption; Agricultural extension; Green revolution; Fertilizer; Greenhouse gas emission; Randomized controlled trial;
    All these keywords.

    JEL classification:

    • O12 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Microeconomic Analyses of Economic Development
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfpoli:v:121:y:2023:i:c:s0306919223001446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/foodpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.