IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2304.07619.html
   My bibliography  Save this paper

Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models

Author

Listed:
  • Alejandro Lopez-Lira
  • Yuehua Tang

Abstract

We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines, even without direct financial training. ChatGPT scores significantly predict out-of-sample daily stock returns, subsuming traditional methods, and predictability is stronger among smaller stocks and following negative news. To explain these findings, we develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs. The model generates several key predictions, which we empirically test: (i) it establishes a critical threshold in AI capabilities necessary for profitable predictions, (ii) it demonstrates that only advanced LLMs can effectively interpret complex information, and (iii) it predicts that widespread LLM adoption can enhance market efficiency. Our results suggest that sophisticated return forecasting is an emerging capability of AI systems and that these technologies can alter information diffusion and decision-making processes in financial markets. Finally, we introduce an interpretability framework to evaluate LLMs' reasoning, contributing to AI transparency and economic decision-making.

Suggested Citation

  • Alejandro Lopez-Lira & Yuehua Tang, 2023. "Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models," Papers 2304.07619, arXiv.org, revised Sep 2024.
  • Handle: RePEc:arx:papers:2304.07619
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2304.07619
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tania Babina & Alex X. He & Anastassia Fedyk & James Hodson, 2022. "Artificial Intelligence, Firm Growth, and Product Innovation," NBER Chapters, in: Economics of Artificial Intelligence, National Bureau of Economic Research, Inc.
    2. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
    3. Calomiris, Charles W. & Mamaysky, Harry, 2019. "How news and its context drive risk and returns around the world," Journal of Financial Economics, Elsevier, vol. 133(2), pages 299-336.
    4. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    5. Jegadeesh, Narasimhan & Wu, Di, 2013. "Word power: A new approach for content analysis," Journal of Financial Economics, Elsevier, vol. 110(3), pages 712-729.
    6. Gerard Hoberg & Gordon Phillips, 2016. "Text-Based Network Industries and Endogenous Product Differentiation," Journal of Political Economy, University of Chicago Press, vol. 124(5), pages 1423-1465.
    7. Paul C. Tetlock & Maytal Saar‐Tsechansky & Sofus Macskassy, 2008. "More Than Words: Quantifying Language to Measure Firms' Fundamentals," Journal of Finance, American Finance Association, vol. 63(3), pages 1437-1467, June.
    8. Korinek, Anton, 2023. "Language Models and Cognitive Automation for Economic Research," CEPR Discussion Papers 17923, C.E.P.R. Discussion Papers.
    9. Ajay Agrawal & Joshua S. Gans & Avi Goldfarb, 2019. "Artificial Intelligence: The Ambiguous Labor Market Impact of Automating Prediction," Journal of Economic Perspectives, American Economic Association, vol. 33(2), pages 31-50, Spring.
    10. Jules H. van Binsbergen & Xiao Han & Alejandro Lopez-Lira, 2020. "Man vs. Machine Learning: The Term Structure of Earnings Expectations and Conditional Biases," NBER Working Papers 27843, National Bureau of Economic Research, Inc.
    11. Shijie Wu & Ozan Irsoy & Steven Lu & Vadim Dabravolski & Mark Dredze & Sebastian Gehrmann & Prabhanjan Kambadur & David Rosenberg & Gideon Mann, 2023. "BloombergGPT: A Large Language Model for Finance," Papers 2303.17564, arXiv.org, revised Dec 2023.
    12. Jiang, Hao & Li, Sophia Zhengzi & Wang, Hao, 2021. "Pervasive underreaction: Evidence from high-frequency data," Journal of Financial Economics, Elsevier, vol. 141(2), pages 573-599.
    13. Diego García, 2013. "Sentiment during Recessions," Journal of Finance, American Finance Association, vol. 68(3), pages 1267-1300, June.
    14. Manela, Asaf & Moreira, Alan, 2017. "News implied volatility and disaster concerns," Journal of Financial Economics, Elsevier, vol. 123(1), pages 137-162.
    15. Zheng Tracy Ke & Bryan T. Kelly & Dacheng Xiu, 2019. "Predicting Returns With Text Data," NBER Working Papers 26186, National Bureau of Economic Research, Inc.
    16. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
    2. García, Diego & Hu, Xiaowen & Rohrer, Maximilian, 2023. "The colour of finance words," Journal of Financial Economics, Elsevier, vol. 147(3), pages 525-549.
    3. Marie Bessec & Julien Fouquau, 2024. "A Green Wave in Media: A Change of Tack in Stock Markets," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(5), pages 1026-1057, October.
    4. Jin, Xuejun & Chen, Cheng & Yang, Xiaolan, 2024. "The effect of international media news on the global stock market," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 50-69.
    5. Jeon, Yoontae & McCurdy, Thomas H. & Zhao, Xiaofei, 2022. "News as sources of jumps in stock returns: Evidence from 21 million news articles for 9000 companies," Journal of Financial Economics, Elsevier, vol. 145(2), pages 1-17.
    6. Andres Algaba & David Ardia & Keven Bluteau & Samuel Borms & Kris Boudt, 2020. "Econometrics Meets Sentiment: An Overview Of Methodology And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 34(3), pages 512-547, July.
    7. Ardia, David & Bluteau, Keven & Boudt, Kris, 2022. "Media abnormal tone, earnings announcements, and the stock market," Journal of Financial Markets, Elsevier, vol. 61(C).
    8. Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
    9. Fraiberger, Samuel P. & Lee, Do & Puy, Damien & Ranciere, Romain, 2021. "Media sentiment and international asset prices," Journal of International Economics, Elsevier, vol. 133(C).
    10. Ali Kabiri & Harold James & John Landon‐Lane & David Tuckett & Rickard Nyman, 2023. "The role of sentiment in the US economy: 1920 to 1934," Economic History Review, Economic History Society, vol. 76(1), pages 3-30, February.
    11. Hubert, Paul & Labondance, Fabien, 2021. "The signaling effects of central bank tone," European Economic Review, Elsevier, vol. 133(C).
    12. Aysan, Ahmet Faruk & Caporin, Massimiliano & Cepni, Oguzhan, 2024. "Not all words are equal: Sentiment and jumps in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    13. Cookson, J. Anthony & Moon, S. Katie & Noh, Joonki, 2020. "Imprecise and Informative: Lessons from Market Reactions to Imprecise Disclosure," SocArXiv akt2c, Center for Open Science.
    14. Anand, Abhinav & Basu, Sankarshan & Pathak, Jalaj & Thampy, Ashok, 2021. "The impact of sentiment on emerging stock markets," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 161-177.
    15. Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022. "Making text count: Economic forecasting using newspaper text," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
    16. Ali Kabiri & Harold James & John Landon-Lane & David Tuckett & Rickard Nyman, 2020. "The Role of Sentiment in the Economy: 1920 to 1934," CESifo Working Paper Series 8336, CESifo.
    17. Zheng, Hannan & Schwenkler, Gustavo, 2020. "The network of firms implied by the news," ESRB Working Paper Series 108, European Systemic Risk Board.
    18. Daniel Borup & Jorge Wolfgang Hansen & Benjamin Dybro Liengaard & Erik Christian Montes Schütte, 2023. "Quantifying investor narratives and their role during COVID‐19," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(4), pages 512-532, June.
    19. Kamal, Javed Bin & Wohar, Mark, 2023. "Heterogenous responses of stock markets to covid related news and sentiments: Evidence from the 1st year of pandemic," International Economics, Elsevier, vol. 173(C), pages 68-85.
    20. Yong Ma & Lu Yan & Dongtao Pan, 2024. "The power of news data in forecasting tail risk: evidence from China," Empirical Economics, Springer, vol. 67(6), pages 2607-2642, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2304.07619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.