IDEAS home Printed from https://ideas.repec.org/p/cmf/wpaper/wp2025_2501.html
   My bibliography  Save this paper

Predicting Market Reactions to News: An LLM-Based Approach Using Spanish Business Articles

Author

Listed:

Abstract

Markets do not always efficiently incorporate news, particularly when information is complex or ambiguous. Traditional text analysis methods fail to capture the economic structure of information and its firm-specific implications. We propose a novel methodology that guides LLMs to systematically identify and classify firm-specific economic shocks in news articles according to their type, magnitude, and direction. This economically-informed classification allows for a more nuanced understanding of how markets process complex information. Using a simple trading strategy, we demonstrate that our LLM-based classification significantly outperforms a benchmark based on clustering vector embeddings, generating consistent profits out-of-sample while maintaining transparent and durable trading signals. The results suggest that LLMs, when properly guided by economic frameworks, can effectively identify persistent patterns in how markets react to different types of firm-specific news. Our findings contribute to understanding market efficiency and information processing, while offering a promising new tool for analyzing financial narratives.

Suggested Citation

  • Jesús Villota, 2025. "Predicting Market Reactions to News: An LLM-Based Approach Using Spanish Business Articles," Working Papers wp2025_2501, CEMFI.
  • Handle: RePEc:cmf:wpaper:wp2025_2501
    as

    Download full text from publisher

    File URL: https://www.cemfi.es/ftp/wp/2501.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scott R. Baker & Nicholas Bloom & Steven J. Davis & Marco C. Sammon, 2021. "What Triggers Stock Market Jumps?," NBER Working Papers 28687, National Bureau of Economic Research, Inc.
    2. Stephen Hansen & Michael McMahon & Andrea Prat, 2018. "Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(2), pages 801-870.
    3. Mitchell, Mark L & Mulherin, J Harold, 1994. "The Impact of Public Information on the Stock Market," Journal of Finance, American Finance Association, vol. 49(3), pages 923-950, July.
    4. Jiang, Hao & Li, Sophia Zhengzi & Wang, Hao, 2021. "Pervasive underreaction: Evidence from high-frequency data," Journal of Financial Economics, Elsevier, vol. 141(2), pages 573-599.
    5. Diego García, 2013. "Sentiment during Recessions," Journal of Finance, American Finance Association, vol. 68(3), pages 1267-1300, June.
    6. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    7. Jegadeesh, Narasimhan & Wu, Di, 2013. "Word power: A new approach for content analysis," Journal of Financial Economics, Elsevier, vol. 110(3), pages 712-729.
    8. Manela, Asaf & Moreira, Alan, 2017. "News implied volatility and disaster concerns," Journal of Financial Economics, Elsevier, vol. 123(1), pages 137-162.
    9. David H. Cutler & James M. Poterba & Lawrence H. Summers, 1988. "What Moves Stock Prices?," Working papers 487, Massachusetts Institute of Technology (MIT), Department of Economics.
    10. Zheng Tracy Ke & Bryan T. Kelly & Dacheng Xiu, 2019. "Predicting Returns With Text Data," NBER Working Papers 26186, National Bureau of Economic Research, Inc.
    11. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    12. Leland Bybee & Bryan Kelly & Yinan Su & Tarun Ramadorai, 2023. "Narrative Asset Pricing: Interpretable Systematic Risk Factors from News Text," The Review of Financial Studies, Society for Financial Studies, vol. 36(12), pages 4759-4787.
    13. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Lopez-Lira & Yuehua Tang, 2023. "Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models," Papers 2304.07619, arXiv.org, revised Sep 2024.
    2. Jeon, Yoontae & McCurdy, Thomas H. & Zhao, Xiaofei, 2022. "News as sources of jumps in stock returns: Evidence from 21 million news articles for 9000 companies," Journal of Financial Economics, Elsevier, vol. 145(2), pages 1-17.
    3. Kirtac, Kemal & Germano, Guido, 2024. "Sentiment trading with large language models," Finance Research Letters, Elsevier, vol. 62(PB).
    4. García, Diego & Hu, Xiaowen & Rohrer, Maximilian, 2023. "The colour of finance words," Journal of Financial Economics, Elsevier, vol. 147(3), pages 525-549.
    5. Marie Bessec & Julien Fouquau, 2024. "A Green Wave in Media: A Change of Tack in Stock Markets," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(5), pages 1026-1057, October.
    6. Eleni Kalamara & Arthur Turrell & Chris Redl & George Kapetanios & Sujit Kapadia, 2022. "Making text count: Economic forecasting using newspaper text," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 896-919, August.
    7. Ardia, David & Bluteau, Keven & Boudt, Kris, 2022. "Media abnormal tone, earnings announcements, and the stock market," Journal of Financial Markets, Elsevier, vol. 61(C).
    8. Walker, Clive B., 2024. "Going mainstream: Cryptocurrency narratives in newspapers," International Review of Financial Analysis, Elsevier, vol. 94(C).
    9. Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
    10. Fraiberger, Samuel P. & Lee, Do & Puy, Damien & Ranciere, Romain, 2021. "Media sentiment and international asset prices," Journal of International Economics, Elsevier, vol. 133(C).
    11. Ali Kabiri & Harold James & John Landon‐Lane & David Tuckett & Rickard Nyman, 2023. "The role of sentiment in the US economy: 1920 to 1934," Economic History Review, Economic History Society, vol. 76(1), pages 3-30, February.
    12. Hubert, Paul & Labondance, Fabien, 2021. "The signaling effects of central bank tone," European Economic Review, Elsevier, vol. 133(C).
    13. Aysan, Ahmet Faruk & Caporin, Massimiliano & Cepni, Oguzhan, 2024. "Not all words are equal: Sentiment and jumps in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    14. Anand, Abhinav & Basu, Sankarshan & Pathak, Jalaj & Thampy, Ashok, 2021. "The impact of sentiment on emerging stock markets," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 161-177.
    15. Boubaker, Sabri & Liu, Zhenya & Zhai, Ling, 2021. "Big data, news diversity and financial market crash," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    16. Luiz Renato Lima & Lucas Lúcio Godeiro, 2023. "Equity‐premium prediction: Attention is all you need," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(1), pages 105-122, January.
    17. Smales, L.A., 2021. "Geopolitical risk and volatility spillovers in oil and stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 358-366.
    18. Ali Kabiri & Harold James & John Landon-Lane & David Tuckett & Rickard Nyman, 2020. "The Role of Sentiment in the Economy: 1920 to 1934," CESifo Working Paper Series 8336, CESifo.
    19. Prajwal Eachempati & Praveen Ranjan Srivastava, 2021. "Accounting for unadjusted news sentiment for asset pricing," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 13(3), pages 383-422, May.
    20. Jin, Xuejun & Chen, Cheng & Yang, Xiaolan, 2024. "The effect of international media news on the global stock market," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 50-69.

    More about this item

    Keywords

    Large language models; business news; stock market reaction; market efficiency.;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cmf:wpaper:wp2025_2501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Araceli Requerey (email available below). General contact details of provider: https://edirc.repec.org/data/cemfies.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.