IDEAS home Printed from https://ideas.repec.org/a/eee/jfinec/v126y2017i2p399-421.html
   My bibliography  Save this article

Early peek advantage? Efficient price discovery with tiered information disclosure

Author

Listed:
  • Hu, Grace Xing
  • Pan, Jun
  • Wang, Jiang

Abstract

From 2007 to June 2013, a small group of fee-paying, high-speed traders receive the Michigan Index of Consumer Sentiment two seconds before its broader release. Within this early peek window, we find highly concentrated trading and a fast price discovery of less than 200 milliseconds. Outside this narrow window, general investors trade at fully adjusted prices. We further establish a causal relationship between the early peek mechanism and the fast price discovery by isolating the impact of the early peek arrangement along two dimensions. In cross section, we use other news releases without the early peek (as controls); in time series, we use the sudden suspension of the early peek arrangement in July 2013 (as the treatment). Our difference-in-difference tests directly connect the early peek arrangement to more efficient price discovery — it results in faster price discovery, lower volatility, and faster resolution of uncertainty. These results show that contrary to the common perception, tiered information release may help to reduce, rather than enhance, the informational advantage of faster traders and improve the efficiency of the price discovery process in financial markets.

Suggested Citation

  • Hu, Grace Xing & Pan, Jun & Wang, Jiang, 2017. "Early peek advantage? Efficient price discovery with tiered information disclosure," Journal of Financial Economics, Elsevier, vol. 126(2), pages 399-421.
  • Handle: RePEc:eee:jfinec:v:126:y:2017:i:2:p:399-421
    DOI: 10.1016/j.jfineco.2017.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304405X1730154X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jfineco.2017.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitri Vayanos & Jiang Wang, 2012. "Liquidity and Asset Returns Under Asymmetric Information and Imperfect Competition," The Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1339-1365.
    2. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    3. He, Hua & Wang, Jiang, 1995. "Differential Information and Dynamic Behavior of Stock Trading Volume," The Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 919-972.
    4. Jiang Wang, 1993. "A Model of Intertemporal Asset Prices Under Asymmetric Information," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(2), pages 249-282.
    5. Menkveld, Albert J., 2013. "High frequency trading and the new market makers," Journal of Financial Markets, Elsevier, vol. 16(4), pages 712-740.
    6. Eric Budish & Peter Cramton & John Shim, 2015. "Editor's Choice The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 130(4), pages 1547-1621.
    7. Andrei Kirilenko & Albert S. Kyle & Mehrdad Samadi & Tugkan Tuzun, 2017. "The Flash Crash: High-Frequency Trading in an Electronic Market," Journal of Finance, American Finance Association, vol. 72(3), pages 967-998, June.
    8. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Clara Vega, 2003. "Micro Effects of Macro Announcements: Real-Time Price Discovery in Foreign Exchange," American Economic Review, American Economic Association, vol. 93(1), pages 38-62, March.
    9. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    10. Grossman, Sanford J, 1976. "On the Efficiency of Competitive Stock Markets Where Trades Have Diverse Information," Journal of Finance, American Finance Association, vol. 31(2), pages 573-585, May.
    11. Balduzzi, Pierluigi & Elton, Edwin J. & Green, T. Clifton, 2001. "Economic News and Bond Prices: Evidence from the U.S. Treasury Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(4), pages 523-543, December.
    12. David Easley & Marcos M. López de Prado & Maureen O'Hara, 2012. "Flow Toxicity and Liquidity in a High-frequency World," The Review of Financial Studies, Society for Financial Studies, vol. 25(5), pages 1457-1493.
    13. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    14. Michael J. Fleming & Eli M. Remolona, 1999. "Price Formation and Liquidity in the U.S. Treasury Market: The Response to Public Information," Journal of Finance, American Finance Association, vol. 54(5), pages 1901-1915, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bastian von Beschwitz & Donald B Keim & Massimo Massa, 2020. "First to “Read” the News: News Analytics and Algorithmic Trading," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(1), pages 122-178.
    2. Cziraki, Peter & Lyandres, Evgeny & Michaely, Roni, 2021. "What do insiders know? Evidence from insider trading around share repurchases and SEOs," Journal of Corporate Finance, Elsevier, vol. 66(C).
    3. Hu, Grace Xing & Pan, Jun & Wang, Jiang & Zhu, Haoxiang, 2022. "Premium for heightened uncertainty: Explaining pre-announcement market returns," Journal of Financial Economics, Elsevier, vol. 145(3), pages 909-936.
    4. Indriawan, Ivan & Martinez, Valeria & Tse, Yiuman, 2021. "The impact of the change in USDA announcement release procedures on agricultural commodity futures," Journal of Commodity Markets, Elsevier, vol. 23(C).
    5. Frijns, Bart & Indriawan, Ivan & Otsubo, Yoichi & Tourani-Rad, Alireza, 2019. "The cost of trading during Federal Funds Rate announcements: Evidence from cross-listed stocks," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 176-187.
    6. Tao Chen & Kam C. Chan & Haodong Chang, 2022. "Periodicity of trading activity in foreign exchange markets," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 45(2), pages 445-465, June.
    7. Akey, Pat & Grégoire, Vincent & Martineau, Charles, 2022. "Price revelation from insider trading: Evidence from hacked earnings news," Journal of Financial Economics, Elsevier, vol. 143(3), pages 1162-1184.
    8. Brice Corgnet & Mark DeSantis & Christoph Siemroth, 2023. "Algorithmic Trading, Price Efficiency and Welfare: An Experimental Approach," Working Papers 2313, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    9. Akey, Pat & Grégoire, Vincent & Martineau, Charles, 2021. "Price Revelation from Insider Trading: Evidence from Hacked Earnings News," SocArXiv qe6tu, Center for Open Science.
    10. Ersan, Oguz & Simsir, Serif Aziz & Simsek, Koray D. & Hasan, Afan, 2021. "The speed of stock price adjustment to corporate announcements: Insights from Turkey," Emerging Markets Review, Elsevier, vol. 47(C).
    11. Gang Chu & Xiao Li & Dehua Shen & Yongjie Zhang, 2021. "Stock Crashes and Jumps Reactions to Information Demand and Supply: An Intraday Analysis," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(3), pages 397-427, September.
    12. Li, Wei-Xuan & Chen, Clara Chia-Sheng & Nguyen, James, 2022. "Which market dominates the price discovery in currency futures? The case of the Chicago Mercantile Exchange and the Intercontinental Exchange," Global Finance Journal, Elsevier, vol. 52(C).
    13. Donald B. Keim & Massimo Massa & Bastian von Beschwitz, 2018. "First to \"Read\" the News: New Analytics and Algorithmic Trading," International Finance Discussion Papers 1233, Board of Governors of the Federal Reserve System (U.S.).
    14. Bizzozero, Paolo & Flepp, Raphael & Franck, Egon, 2018. "The effect of fast trading on price discovery and efficiency: Evidence from a betting exchange," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 126-143.
    15. Kurov, Alexander & Sancetta, Alessio & Wolfe, Marketa Halova, 2022. "Drift Begone! Release policies and preannouncement informed trading," Journal of International Money and Finance, Elsevier, vol. 128(C).
    16. Ge, Hengshun & Yang, Haijun & Doukas, John A., 2024. "The optimal strategies of competitive high-frequency traders and effects on market liquidity," International Review of Economics & Finance, Elsevier, vol. 91(C), pages 653-679.
    17. Adjemian, Michael K. & Irwin, Scott H., 2020. "The market response to government crop news under different release regimes," Journal of Commodity Markets, Elsevier, vol. 19(C).
    18. Liao Xu & Xiangkang Yin & Jing Zhao, 2022. "Are the flows of exchange‐traded funds informative?," Financial Management, Financial Management Association International, vol. 51(4), pages 1165-1200, December.
    19. Aziz Simsir, Serif & Simsek, Koray D., 2022. "The market impact of private information before corporate Announcements: Evidence from Turkey," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    2. Hautsch, Nikolaus & Noé, Michael & Zhang, S. Sarah, 2017. "The ambivalent role of high-frequency trading in turbulent market periods," CFS Working Paper Series 580, Center for Financial Studies (CFS).
    3. Breedon, Francis & Chen, Louisa & Ranaldo, Angelo & Vause, Nicholas, 2023. "Judgment day: Algorithmic trading around the Swiss franc cap removal," Journal of International Economics, Elsevier, vol. 140(C).
    4. Nicholas Hirschey, 2021. "Do High-Frequency Traders Anticipate Buying and Selling Pressure?," Management Science, INFORMS, vol. 67(6), pages 3321-3345, June.
    5. Baldauf, Markus & Mollner, Joshua, 2022. "Fast traders make a quick buck: The role of speed in liquidity provision," Journal of Financial Markets, Elsevier, vol. 58(C).
    6. Bellia, Mario & Pelizzon, Loriana & Subrahmanyam, Marti & Uno, Jun & Yuferova, Darya, 2017. "Coming early to the party," SAFE Working Paper Series 182, Leibniz Institute for Financial Research SAFE.
      • Mario Bellia & Loriana Pelizzon & Marti G. Subrahmanyam & Jun Uno & Darya Yuferova, 2020. "Coming early to the party," Working Papers 2020:11, Department of Economics, University of Venice "Ca' Foscari".
    7. Yamada, Masahiro & Ito, Takatoshi, 2022. "Price discovery and liquidity recovery: Forex market reactions to macro announcements," Journal of International Money and Finance, Elsevier, vol. 120(C).
    8. Mark Marner-Hausen, 2022. "Developing a Framework for Real-Time Trading in a Laboratory Financial Market," ECONtribute Discussion Papers Series 172, University of Bonn and University of Cologne, Germany.
    9. Gerig, Austin & Michayluk, David, 2017. "Automated liquidity provision," Pacific-Basin Finance Journal, Elsevier, vol. 45(C), pages 1-13.
    10. Jonathan Brogaard & Terrence Hendershott & Ryan Riordan, 2014. "High-Frequency Trading and Price Discovery," The Review of Financial Studies, Society for Financial Studies, vol. 27(8), pages 2267-2306.
    11. Angerer, Martin & Neugebauer, Tibor & Shachat, Jason, 2023. "Arbitrage bots in experimental asset markets," Journal of Economic Behavior & Organization, Elsevier, vol. 206(C), pages 262-278.
    12. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    13. Rzayev, Khaladdin & Ibikunle, Gbenga, 2019. "A state-space modeling of the information content of trading volume," Journal of Financial Markets, Elsevier, vol. 46(C).
    14. Aliyev, Nihad & Huseynov, Fariz & Rzayev, Khaladdin, 2022. "Algorithmic trading and investment-to-price sensitivity," LSE Research Online Documents on Economics 118844, London School of Economics and Political Science, LSE Library.
    15. Roşu, Ioanid, 2019. "Fast and slow informed trading," Journal of Financial Markets, Elsevier, vol. 43(C), pages 1-30.
    16. Martin D. D. Evans & Richard K. Lyons, 2017. "Time-Varying Liquidity in Foreign Exchange," World Scientific Book Chapters, in: Studies in Foreign Exchange Economics, chapter 8, pages 325-361, World Scientific Publishing Co. Pte. Ltd..
    17. Mila Getmansky & Ravi Jagannathan & Loriana Pelizzon & Ernst Schaumburg & Darya Yuferova, 2017. "Stock Price Crashes: Role of Slow-Moving Capital," NBER Working Papers 24098, National Bureau of Economic Research, Inc.
    18. S. Sarah Zhang, 2018. "Need for speed: Hard information processing in a high‐frequency world," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 3-21, January.
    19. Peress, Joel & Schmidt, Daniel, 2021. "Noise traders incarnate: Describing a realistic noise trading process," Journal of Financial Markets, Elsevier, vol. 54(C).
    20. Pavan, Alessandro & Vives, Xavier, 2015. "Information, Coordination, and Market Frictions: An Introduction," Journal of Economic Theory, Elsevier, vol. 158(PB), pages 407-426.

    More about this item

    Keywords

    Early peek; Information disclosure; Price discovery; High frequency trading;
    All these keywords.

    JEL classification:

    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfinec:v:126:y:2017:i:2:p:399-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505576 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.