IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v212y2023icp322-332.html
   My bibliography  Save this article

Pigouvian algorithmic platform design

Author

Listed:
  • Norman, Thomas W.L.

Abstract

There are rising concerns that reinforcement algorithms might learn tacit collusion in oligopolistic pricing, and moreover that the resulting ‘black box’ strategies would be difficult to regulate. Here, I exploit a strong connection between evolutionary game theory and reinforcement learning to show when the latter’s rest points are Bayes–Nash equilibria, but also to derive a system of Pigouvian taxes guaranteed to implement an (unknown) socially optimal outcome of an oligopoly pricing game. Finally, I illustrate reinforcement learning of equilibrium play via simulation, which provides evidence of the capacity of reinforcement algorithms to collude in a very simple setting, but the introduction of the optimal tax scheme induces a competitive outcome.

Suggested Citation

  • Norman, Thomas W.L., 2023. "Pigouvian algorithmic platform design," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 322-332.
  • Handle: RePEc:eee:jeborg:v:212:y:2023:i:c:p:322-332
    DOI: 10.1016/j.jebo.2023.05.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167268123001725
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jebo.2023.05.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jehiel, Philippe & Samet, Dov, 2005. "Learning to play games in extensive form by valuation," Journal of Economic Theory, Elsevier, vol. 124(2), pages 129-148, October.
    2. Tilman Börgers & Antonio J. Morales & Rajiv Sarin, 2004. "Expedient and Monotone Learning Rules," Econometrica, Econometric Society, vol. 72(2), pages 383-405, March.
    3. , & ,, 2007. "Valuation equilibrium," Theoretical Economics, Econometric Society, vol. 2(2), June.
    4. Neyman, Abraham, 1985. "Bounded complexity justifies cooperation in the finitely repeated prisoners' dilemma," Economics Letters, Elsevier, vol. 19(3), pages 227-229.
    5. Borgers, Tilman & Sarin, Rajiv, 2000. "Naive Reinforcement Learning with Endogenous Aspirations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 921-950, November.
    6. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    7. William H. Sandholm, 2002. "Evolutionary Implementation and Congestion Pricing," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(3), pages 667-689.
    8. Martin Posch, 1997. "Cycling in a stochastic learning algorithm for normal form games," Journal of Evolutionary Economics, Springer, vol. 7(2), pages 193-207.
    9. McKelvey Richard D. & Palfrey Thomas R., 1995. "Quantal Response Equilibria for Normal Form Games," Games and Economic Behavior, Elsevier, vol. 10(1), pages 6-38, July.
    10. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    11. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    12. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    13. Maskin, Eric & Tirole, Jean, 1988. "A Theory of Dynamic Oligopoly, II: Price Competition, Kinked Demand Curves, and Edgeworth Cycles," Econometrica, Econometric Society, vol. 56(3), pages 571-599, May.
    14. Sandholm, William H., 2007. "Pigouvian pricing and stochastic evolutionary implementation," Journal of Economic Theory, Elsevier, vol. 132(1), pages 367-382, January.
    15. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    16. Barlo, Mehmet & Carmona, Guilherme & Sabourian, Hamid, 2016. "Bounded memory Folk Theorem," Journal of Economic Theory, Elsevier, vol. 163(C), pages 728-774.
    17. Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
    18. Calzolari, Giacomo & Calvano, Emilio & Denicolo, Vincenzo & Pastorello, Sergio, 2021. "Algorithmic collusion with imperfect monitoring," CEPR Discussion Papers 15738, C.E.P.R. Discussion Papers.
    19. William H. Sandholm, 2005. "Negative Externalities and Evolutionary Implementation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 885-915.
    20. John G. Cross, 1973. "A Stochastic Learning Model of Economic Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 87(2), pages 239-266.
    21. David Silver & Aja Huang & Chris J. Maddison & Arthur Guez & Laurent Sifre & George van den Driessche & Julian Schrittwieser & Ioannis Antonoglou & Veda Panneershelvam & Marc Lanctot & Sander Dieleman, 2016. "Mastering the game of Go with deep neural networks and tree search," Nature, Nature, vol. 529(7587), pages 484-489, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    2. Oyarzun, Carlos & Sarin, Rajiv, 2013. "Learning and risk aversion," Journal of Economic Theory, Elsevier, vol. 148(1), pages 196-225.
    3. Mengel, Friederike, 2012. "Learning across games," Games and Economic Behavior, Elsevier, vol. 74(2), pages 601-619.
    4. Hopkins, Ed & Posch, Martin, 2005. "Attainability of boundary points under reinforcement learning," Games and Economic Behavior, Elsevier, vol. 53(1), pages 110-125, October.
    5. Izquierdo, Luis R. & Izquierdo, Segismundo S. & Gotts, Nicholas M. & Polhill, J. Gary, 2007. "Transient and asymptotic dynamics of reinforcement learning in games," Games and Economic Behavior, Elsevier, vol. 61(2), pages 259-276, November.
    6. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.
    7. DavidP. Myatt & Chris Wallace, 2009. "Evolution, Teamwork and Collective Action: Production Targets in the Private Provision of Public Goods," Economic Journal, Royal Economic Society, vol. 119(534), pages 61-90, January.
    8. Mohlin, Erik & Östling, Robert & Wang, Joseph Tao-yi, 2020. "Learning by similarity-weighted imitation in winner-takes-all games," Games and Economic Behavior, Elsevier, vol. 120(C), pages 225-245.
    9. Alanyali, Murat, 2010. "A note on adjusted replicator dynamics in iterated games," Journal of Mathematical Economics, Elsevier, vol. 46(1), pages 86-98, January.
    10. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    11. Jehiel, Philippe & Singh, Juni, 2021. "Multi-state choices with aggregate feedback on unfamiliar alternatives," Games and Economic Behavior, Elsevier, vol. 130(C), pages 1-24.
    12. Laslier, Jean-Francois & Topol, Richard & Walliser, Bernard, 2001. "A Behavioral Learning Process in Games," Games and Economic Behavior, Elsevier, vol. 37(2), pages 340-366, November.
    13. Ivan Conjeaud, 2023. "Algorithmic collusion under competitive design," Papers 2312.02644, arXiv.org, revised Sep 2024.
    14. Ianni, Antonella, 2014. "Learning strict Nash equilibria through reinforcement," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 148-155.
    15. Cominetti, Roberto & Melo, Emerson & Sorin, Sylvain, 2010. "A payoff-based learning procedure and its application to traffic games," Games and Economic Behavior, Elsevier, vol. 70(1), pages 71-83, September.
    16. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    17. Philippe Jehiel, 2022. "Analogy-Based Expectation Equilibrium and Related Concepts:Theory, Applications, and Beyond," Working Papers halshs-03735680, HAL.
    18. Antonio Morales, 2005. "On the Role of the Group Composition for Achieving Optimality," Annals of Operations Research, Springer, vol. 137(1), pages 387-397, July.
    19. Walter Gutjahr, 2006. "Interaction dynamics of two reinforcement learners," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(1), pages 59-86, February.
    20. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.

    More about this item

    Keywords

    Algorithms; Reinforcement learning; Collusion; Platform design; replicator dynamics; Pigouvian taxation;
    All these keywords.

    JEL classification:

    • C73 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Stochastic and Dynamic Games; Evolutionary Games
    • K21 - Law and Economics - - Regulation and Business Law - - - Antitrust Law
    • L40 - Industrial Organization - - Antitrust Issues and Policies - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:212:y:2023:i:c:p:322-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jebo .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.