IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v72y2004i2p383-405.html
   My bibliography  Save this article

Expedient and Monotone Learning Rules

Author

Listed:
  • Tilman Börgers
  • Antonio J. Morales
  • Rajiv Sarin

Abstract

This paper considers learning rules for environments in which little prior and feedback information is available to the decision maker. Two properties of such learning rules are studied: absolute expediency and monotonicity. Both require that some aspect of the decision maker's performance improves from the current period to the next. The paper provides some necessary, and some sufficient conditions for these properties. It turns out that there is a large variety of learning rules that have the properties. However, all learning rules that have these properties are related to the replicator dynamics of evolutionary game theory. For the case in which there are only two actions, it is shown that one of the absolutely expedient learning rules dominates all others. Copyright The Econometric Society 2004.

Suggested Citation

  • Tilman Börgers & Antonio J. Morales & Rajiv Sarin, 2004. "Expedient and Monotone Learning Rules," Econometrica, Econometric Society, vol. 72(2), pages 383-405, March.
  • Handle: RePEc:ecm:emetrp:v:72:y:2004:i:2:p:383-405
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1468-0262.2004.00495.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Samuelson, L., 1989. "Evolutionnary Stability In Asymmetric Games," Papers 11-8-2, Pennsylvania State - Department of Economics.
    2. Roth, Alvin E. & Erev, Ido, 1995. "Learning in extensive-form games: Experimental data and simple dynamic models in the intermediate term," Games and Economic Behavior, Elsevier, vol. 8(1), pages 164-212.
    3. Borgers, Tilman & Sarin, Rajiv, 1997. "Learning Through Reinforcement and Replicator Dynamics," Journal of Economic Theory, Elsevier, vol. 77(1), pages 1-14, November.
    4. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    5. Erev, Ido & Roth, Alvin E, 1998. "Predicting How People Play Games: Reinforcement Learning in Experimental Games with Unique, Mixed Strategy Equilibria," American Economic Review, American Economic Association, vol. 88(4), pages 848-881, September.
    6. Rustichini, Aldo, 1999. "Optimal Properties of Stimulus--Response Learning Models," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 244-273, October.
    7. David Easley & Aldo Rustichini, 1999. "Choice without Beliefs," Econometrica, Econometric Society, vol. 67(5), pages 1157-1184, September.
    8. Borgers, Tilman & Sarin, Rajiv, 2000. "Naive Reinforcement Learning with Endogenous Aspirations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 41(4), pages 921-950, November.
    9. John G. Cross, 1973. "A Stochastic Learning Model of Economic Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 87(2), pages 239-266.
    10. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonas Hedlund & Carlos Oyarzun, 2018. "Imitation in heterogeneous populations," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 65(4), pages 937-973, June.
    2. Bouwe R. Dijkstra, 2011. "Good and Bad Equilibria with the Informal Sector," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 167(4), pages 668-685, December.
    3. Karl H. Schlag, 2007. "Distribution-Free Learning," Economics Working Papers ECO2007/01, European University Institute.
    4. Hopkins, Ed, 2007. "Adaptive learning models of consumer behavior," Journal of Economic Behavior & Organization, Elsevier, vol. 64(3-4), pages 348-368.
    5. Oyarzun, Carlos & Sarin, Rajiv, 2012. "Mean and variance responsive learning," Games and Economic Behavior, Elsevier, vol. 75(2), pages 855-866.
    6. Mengel Friederike & Rivas Javier, 2012. "An Axiomatization of Learning Rules when Counterfactuals are not Observed," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 12(1), pages 1-19, July.
    7. Oyarzun, Carlos & Sarin, Rajiv, 2013. "Learning and risk aversion," Journal of Economic Theory, Elsevier, vol. 148(1), pages 196-225.
    8. Antonio Morales & Pablo Brañas Garza, 2003. "Computational Errors in Guessing Games1," Economic Working Papers at Centro de Estudios Andaluces E2003/11, Centro de Estudios Andaluces.
    9. Oyarzun, Carlos, 2014. "A note on absolutely expedient learning rules," Journal of Economic Theory, Elsevier, vol. 153(C), pages 213-223.
    10. Rivas, Javier, 2013. "Cooperation, imitation and partial rematching," Games and Economic Behavior, Elsevier, vol. 79(C), pages 148-162.
    11. Agastya, Murali & Slinko, Arkadii, 2015. "Dynamic choice in a complex world," Journal of Economic Theory, Elsevier, vol. 158(PA), pages 232-258.
    12. Carlos Oyarzun & Johannes Ruf, 2009. "Monotone imitation," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 41(3), pages 411-441, December.
    13. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    14. Oyarzun, Carlos & Ruf, Johannes, 2014. "Convergence in models with bounded expected relative hazard rates," Journal of Economic Theory, Elsevier, vol. 154(C), pages 229-244.
    15. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    16. Lahkar, Ratul & Seymour, Robert M., 2013. "Reinforcement learning in population games," Games and Economic Behavior, Elsevier, vol. 80(C), pages 10-38.
    17. Oyarzun, Carlos & Sanjurjo, Adam & Nguyen, Hien, 2017. "Response functions," European Economic Review, Elsevier, vol. 98(C), pages 1-31.
    18. John Huyck & Raymond Battalio & Frederick Rankin, 2007. "Selection dynamics and adaptive behavior without much information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(1), pages 53-65, October.
    19. Norman, Thomas W.L., 2023. "Pigouvian algorithmic platform design," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 322-332.
    20. Antonio J. Morales Siles, 2002. "Absolute Expediency and Imitative Behaviour," Economic Working Papers at Centro de Estudios Andaluces E2002/03, Centro de Estudios Andaluces.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oyarzun, Carlos & Sarin, Rajiv, 2013. "Learning and risk aversion," Journal of Economic Theory, Elsevier, vol. 148(1), pages 196-225.
    2. Ianni, A., 2002. "Reinforcement learning and the power law of practice: some analytical results," Discussion Paper Series In Economics And Econometrics 203, Economics Division, School of Social Sciences, University of Southampton.
    3. Atanasios Mitropoulos, 2001. "Learning Under Little Information: An Experiment on Mutual Fate Control," Game Theory and Information 0110003, University Library of Munich, Germany.
    4. Ed Hopkins, 2002. "Two Competing Models of How People Learn in Games," Econometrica, Econometric Society, vol. 70(6), pages 2141-2166, November.
    5. Dana Heller, 2000. "Parametric Adaptive Learning," Econometric Society World Congress 2000 Contributed Papers 1496, Econometric Society.
    6. Mengel, Friederike, 2012. "Learning across games," Games and Economic Behavior, Elsevier, vol. 74(2), pages 601-619.
    7. Weibull, Jörgen W., 1997. "What have we learned from Evolutionary Game Theory so far?," Working Paper Series 487, Research Institute of Industrial Economics, revised 26 Oct 1998.
    8. Izquierdo, Luis R. & Izquierdo, Segismundo S. & Gotts, Nicholas M. & Polhill, J. Gary, 2007. "Transient and asymptotic dynamics of reinforcement learning in games," Games and Economic Behavior, Elsevier, vol. 61(2), pages 259-276, November.
    9. Ianni, Antonella, 2014. "Learning strict Nash equilibria through reinforcement," Journal of Mathematical Economics, Elsevier, vol. 50(C), pages 148-155.
    10. Erik Mohlin & Robert Ostling & Joseph Tao-yi Wang, 2014. "Learning by Imitation in Games: Theory, Field, and Laboratory," Economics Series Working Papers 734, University of Oxford, Department of Economics.
    11. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.
    12. Hopkins, Ed, 2007. "Adaptive learning models of consumer behavior," Journal of Economic Behavior & Organization, Elsevier, vol. 64(3-4), pages 348-368.
    13. DeJong, D.V. & Blume, A. & Neumann, G., 1998. "Learning in Sender-Receiver Games," Other publications TiSEM 4a8b4f46-f30b-4ad2-bb0c-1, Tilburg University, School of Economics and Management.
    14. Jean-François Laslier & Bernard Walliser, 2015. "Stubborn learning," Theory and Decision, Springer, vol. 79(1), pages 51-93, July.
    15. Mohlin, Erik & Östling, Robert & Wang, Joseph Tao-yi, 2020. "Learning by similarity-weighted imitation in winner-takes-all games," Games and Economic Behavior, Elsevier, vol. 120(C), pages 225-245.
    16. Walter Gutjahr, 2006. "Interaction dynamics of two reinforcement learners," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 14(1), pages 59-86, February.
    17. Daskalova, Vessela & Vriend, Nicolaas J., 2021. "Learning frames," Journal of Economic Behavior & Organization, Elsevier, vol. 191(C), pages 78-96.
    18. Franke, Reiner, 2003. "Reinforcement learning in the El Farol model," Journal of Economic Behavior & Organization, Elsevier, vol. 51(3), pages 367-388, July.
    19. Beggs, A.W., 2005. "On the convergence of reinforcement learning," Journal of Economic Theory, Elsevier, vol. 122(1), pages 1-36, May.
    20. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011, Elsevier.

    More about this item

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:72:y:2004:i:2:p:383-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.