IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/24239.html
   My bibliography  Save this paper

AI, Labor, Productivity and the Need for Firm-Level Data

Author

Listed:
  • Robert Seamans
  • Manav Raj

Abstract

We summarize existing empirical findings regarding the adoption of robotics and AI and its effects on aggregated labor and productivity, and argue for more systematic collection of the use of these technologies at the firm level. Existing empirical work primarily uses statistics aggregated by industry or country, which precludes in-depth studies regarding the conditions under which robotics and AI complement or are substituting for labor. Further, firm-level data would also allow for studies of effects on firms of different sizes, the role of market structure in technology adoption, the impact on entrepreneurs and innovators, and the effect on regional economies amongst others. We highlight several ways that such firm-level data could be collected and used by academics, policymakers and other researchers.

Suggested Citation

  • Robert Seamans & Manav Raj, 2018. "AI, Labor, Productivity and the Need for Firm-Level Data," NBER Working Papers 24239, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:24239
    Note: PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w24239.pdf
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • B4 - Schools of Economic Thought and Methodology - - Economic Methodology
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights
    • O4 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:24239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.